(19) **日本国特許庁(JP)**

(12) 特 許 公 報(B2)

(11)特許番号

特許第5854293号 (P5854293)

(45) 発行日 平成28年2月9日(2016.2.9)

(24) 登録日 平成27年12月18日 (2015.12.18)

(51) Int.Cl. F 1

A 6 1 B 17/115 (2006.01)

A 6 1 B 17/11 3 1 O

講求項の数 18 (全 72 頁)

(21) 出願番号 特願2014-8906 (P2014-8906) (22) 出願日 平成26年1月21日 (2014. 1. 21)

(62) 分割の表示 特願2010-528199 (P2010-528199)

の分割

原出願日 平成20年10月4日 (2008.10.4) (65) 公開番号 特開2014-158694 (P2014-158694A)

(43) 公開日 平成26年9月4日 (2014.9.4) 審査請求日 平成26年2月19日 (2014.2.19)

(31) 優先権主張番号 60/977,489

(32) 優先日 平成19年10月4日(2007.10.4)

(33) 優先権主張国 米国 (US) (31) 優先権主張番号 12/245,017

(32) 優先日 平成20年10月3日 (2008.10.3)

(33) 優先権主張国 米国(US)

(73)特許権者 508024083

エシコン エンドーサージェリー、インク

.

アメリカ合衆国 オハイオ州 45242 , シンシナティ, クリークロード 454

5

(74)代理人 100096024

弁理士 柏原 三枝子

(74)代理人 100125520

弁理士 高橋 剛一

(74)代理人 100155310

弁理士 柴田 雅仁

最終頁に続く

(54) 【発明の名称】手動解放付電気自己駆動式手術器具

(57)【特許請求の範囲】

【請求項1】

手術器具であって:

作動時、外科処置を行うことが可能な作動アセンブリを有する手術用エンドエフェクタ を具え、前記作動アセンブリの一部は、第1の位置と第2の位置との間で可動であり;

前記作動アセンブリを作動させるために前記エンドエフェクタに接続されたハンドルを 具え、当該ハンドルが:

前記ハンドル内に配置された電源と;

前記ハンドル内に配置され前記電源から電力供給されるモータと;

前記モータを<u>前記作動アセンブリの</u>可動部分に接続する変速機であって、前記モータが作動している時に、前記可動部分を前記第1の位置と第2の位置の間のどこかに移動させることが可能な変速機と;

前記変速機を選択的に遮断し、この遮断中に、前記モータの動作から独立して、前記可動部分を前記第1の位置の方へ移動させる手動解放機構と、を有することを特徴とする手術器具。

【請求項2】

請求項1に記載の器具において、前記第1の位置は開始位置であり、前記第2の位置は十分に作動した位置であることを特徴とする器具。

【請求項3】

請求項1に記載の器具において、さらに、前記電源と前記モータとに電気的に接続され

、前記モータを選択的に作動させるコントローラを具えることを特徴とする器具。

【請求項4】

請求項1に記載の器具において、前記手動解放機構は、前記変速機に機械的に連結されていることを特徴とする器具。

【請求項5】

請求項1に記載の器具において、前記手動解放機構は、前記変速機内に機械的に配置されていることを特徴とする器具。

【請求項6】

請求項1に記載の器具において:

前記手術用エンドエフェクタは、内視鏡手術用ステープラと組織カッタであって; <u>前記作動アセンブリの</u>前記可動部分は、少なくともステープル作動および組織切開スライドを含むことを特徴とする器具。

【請求項7】

請求項1に記載の器具において、前記電源は、取り外し可能なバッテリであることを特徴とする器具。

【請求項8】

請求項3に記載の器具において、前記コントローラは、マルチステートスイッチを含み <u>、</u>前記スイッチが第1の状態にあるときに前記モータを順方向に回転させ、前記スイッチ が第2の状態にあるときに前記モータを逆方向に回転させることを特徴とする器具。

【請求項9】

請求項3に記載の器具において、前記変速機は、モータドライブ側と作動側とを有し、 前記手動解放機構はその間に連結されることを特徴とする器具。

【請求項10】

請求項9に記載の器具において:

前記モータドライブ側は、最終ギアを含む一連の回転減少ギアを有し;

前記作動側は:

少なくとも1のギアと;

前記少なくとも 1 のギアに連結され、<u>前記作動アセンブリの</u>前記可動部分の少なくと も一部に直接連結されるラックアンドピニオンアセンブリとを有し;

前記手動解放機構は、前記少なくとも1のギアと前記最終ギアとの間に機械的に連結されることを特徴とする器具。

【請求項11】

請求項10に記載の器具において:

前記モータは出力ギアを有し;

前記一連のギアは、前記出力ギアに連結される第1段を有することを特徴とする器具。

【請求項12】

請求項11に記載の器具において、

前記一連の回転減少ギアは、第1、第2および第3段と、前記モータドライブ側から前記作動側にわたるシャフトを有するクロスオーバギアとを具え;

前記クロスオーバギアは、前記第3段に連結されることを特徴とする器具。

【請求項13】

請求項10に記載の器具において:

前記一連の回転減少ギアは、前記モータドライブ側から前記作動側にわたるクロスオーバシャフトを有するクロスオーバギアを有し;

前記クロスオーバギアは、前記一連の回転減少ギアに連結され;

キャッスルギアが、前記クロスオーバシャフトの周りに回転可能に連結固定され、その上を長手方向に移動可能であり、前記キャッスルギアは、前記作動側の方へ伸長する胸壁を有し;

前記作動側の少なくとも1のギアは、前記胸壁と合致するよう形成された胸壁スロット を有する第1のピニオンを含み; 10

20

.

30

40

バイアス装置が、前記クロスオーバギアと前記キャッスルギアとの間に配置され、前記作動側の方へ前記キャッスルギアにバイアスを付与して前記キャッスルギアの前記第1のピニオンへの選択的な係合を可能にし、これにより、係合時に、前記クロスオーバシャフトの回転で前記第1のピニオンに対応する回転を生じさせ;

前記手動解放機構は、前記バイアスを越える反力を前記キャッスルギアに提供し、前記手動解放機構が少なくとも部分的に作動すると、前記第1のピニオンから前記キャッスルギアを解放するよう形成され、配置された解放部分を有することを特徴とする器具。

【請求項14】

請求項13に記載の器具において、前記作動側の前記少なくとも1のギアは、第2のピニオン段を具え、この第2のピニオン段が:

第2のピニオンシャフトと;

前記第1のピニオンに連結され、前記第2のピニオンシャフトに回転可能に取り付けられる第2のピニオンギアと;

前記第2のピニオンシャフトに回転可能に取り付けられる第3のピニオンとを有し、前記第3のピニオンは、前記ラックアンドピニオンアセンブリのピニオンであって、回転時、そのラックを長手方向に動かすことを特徴とする器具。

【請求項15】

請求項13に記載の器具において、前記手動解放機構は:

前記解放部分が、前記バイアスより小さい反力を前記キャッスルギアに提供している休止状態と;

前記解放部分が、前記バイアスより大きい反力を前記キャッスルギアに提供し、前記胸壁を前記胸壁スロットの外へ動かす第1の部分作動状態と;

前記手動解放機構が、前記第1のピニオンを回転させ、ラックを退避方向へ長手方向に動かす第2の部分作動状態とを有することを特徴とする器具。

【請求項16】

請求項13に記載の器具において:

前記作動側の前記少なくとも1のギアは、少なくとも1の解放ギアを具え;

前記第1のピニオンは、前記少なくとも1の解放ギアに直接接続され、回転時、前記少なくとも1の解放ギアを回転させることを特徴とする器具。

【請求項17】

請求項13に記載の器具において:

前記作動側の前記少なくとも1のギアは、第1段および第2段の解放ギアを具え;

前記第1のピニオンは、前記第1段の解放ギアに直接接続され、回転時、前記第1および第2の解放ギアを回転させることを特徴とする器具。

【請求項18】

請求項16に記載の器具において:

前記手動解放機構は、手動解放レバーを具え、この手動解放レバーが:

前記ハンドルに回転可能に接続され;

一方向ラチェットアセンブリを有し;

前記少なくとも1の解放ギアが、前記ラチェットアセンブリに直接接続される軸を有し、前記手動解放レバーが少なくとも部分的に作動されると、前記手動解放レバーに対応して回転し、前記手動解放レバーが作動されないと、前記手動解放レバーとは独立して回転することを特徴とする器具。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は手術器具の分野に関し、特に、限定しないが、ステープル装置に関する。本願に記載するステープル装置は、手持ち式で、完全に電気自己駆動式の、手動解放機能付の、制御された手術用ステープラである。

[0002]

10

20

30

40

20

30

40

50

従来も医療用ステープル装置は存在する。Ethicon Endo-Surgery、Inc. (ジョンソン&ジョンソンの会社:以下「エチコン」と称す。)が、このようなステープル装置を製造販売している。エチコンが製造する円形ステープル装置は、取引名がPROXIMATE(登録商標)PPH、CDH、ILSとして参照され、エチコンが製造する線形ステープラは取引名CONTOURおよびPROXIMATEで参照される。これらの手術用ステープラの例ではいずれも、ステープルが出る際に組織がステープルカートリッジとアンビルとの間で圧迫され、圧迫された組織が切れてしまうこともある。施術者により結合された特定の組織によっては、組織の圧迫が少なすぎたり(組織内で血液の色が見えるくらい)、組織の圧迫が強すぎたり(組織が破壊されるくらい)、あるいは正しく圧迫される(組織から液体が除去され、乾燥または漂白状態として参照される)。

[0003]

供給されるステープルは、与えられた長さであり、カートリッジとアンビルが許容されるステープル射出距離内にある必要があり、これによってステープルが射出されると正しく閉じる。このため、これらのステープラは、2つの面の間の相対距離と、この距離がステープルの長さの射出範囲内か否かを示す装置を具える。このようなインジケータは機械的であり、ウィンドウの後ろのスライドバーの形をなし、そこには安全なステープル射出を囲が示されている。これらのステープラはすべて手動であり、換言すれば、アンビルステープラカートリッジを組織の周りに位置させ、留めおよび/または切って、アンビルとステープラカートリッジを互いに閉じ、および、ステープルを組織に射出し固定であるとステープルを射出させるのに必要な長さ方向の力はステープルカートリッジで通常250ポンドのオーダーであるため、従来技術のステープラでは、電気駆動でこれらの操作の各々を実現するものはなかった。さらに、このようなステープラは、留められる組織に作用する力を最適化するための如何なる種類の圧迫作用インジケータもなく、組織の分解(degradation)が生じない。

[0004]

片手駆動の、管内の(intraluminal)吻合円形ステープラが、例えばMainらからエ チコンに譲渡された米国特許第5,104,025号に記載されている。Mainらは参 照により全体としてここに組み込まれている。図7の分解図に最も明確に示すように、M ainらでは、トロカールシャフト22が遠位のギザギザ21と、アンビル内で前記トロ カールシャフト22を鋸歯29に整列させるいくつかの凹部28とを具え、これによりア ンビル34内でステープルが整列する。トロカールのチップ26は、圧力を加えると組織 を穿刺することができる。Mainらの図3乃至6には、円形ステープラ10がどのよう に機能して2つの組織を結合させるかが示されている。アンビル30がヘッド20の近く に移動すると、特に図5、6で示されるように、間に挟まれた組織がその間で圧迫される 。この組織が過度に圧迫されると、外科的ステープル処置は成功しない。このため、組織 の許容最大圧縮力を超えないことが望まれる。間に挟まれる組織は、施術の際に許容しう る範囲の圧縮力にさらすことができる。この範囲は、最適組織圧縮(optimal tissue com pression)またはOTCとして知られ、ステープルされる組織の種類による。 Mainら のステープラは、利用者にアンビルとステープルカートリッジ間の安全なステープル射出 距離を示すバーインジケータを有さないため、ステープルの前に利用者にどのようなレベ ルの圧縮力がかかっているかを示すことができない。このような表示を提供し、組織の過 度の圧迫を防止することが望まれている。

【発明の概要】

[0005]

本発明は、医療処置を及ぼすのに自己電力を用いる電気自己駆動式の手術用装置を提供することにより、上記および他の従来技術の困難性を解消するものである。例えば、線形エンドカッタにおいて、電気内蔵電力により、ステープルおよび/または切開される組織の周りでアンビルとステープラカートリッジを互いに位置決め可能であり、アンビルおよびステープラカートリッジを互いに閉じた後、ステープルを前記組織に射出し固定する(

および/または前記組織を切除する)。さらに、電気自己駆動式の手術用装置は、利用者にステープルを射出する前に利用者が予め設定した組織に加わる圧縮力のレベルを示すことができる。本発明はまた、最適組織圧縮(OTC)が存在する場合に電気式手術用ステープル装置を操作してステープルする方法を提供する。さらに、部分作動やジャムから復旧可能な手動解放装置を提供する。

[0006]

2つのアンビルとステープル射出サブアセンブリのオフセット軸の構成は、利用者の手に快適にフィットするよう寸法調整されうる装置を作成する。それはまた、以前は必要だったネストされた(同軸)中空軸を除去することにより、製造の困難性を低減させる。ステープル射出サブアセンブリからオフセットされたアンビルサブアセンブリの軸により、アンビルを伸長および後退させるためのねじ切りされたロッドの長さを約2インチ縮小することができ、これにより製造コストを削減し、縦の寸法を短くする。

[0007]

電気ステープラを用いる例示的な方法は、テスト目的の手動モードへ入ることができる 電源オン特性を含む。外科的処置において、ステープラは一方向の装置である。テストモ ードでは、しかしながら、利用者は思い通りにトロカールを前後させることができる。こ のテストモードは解除可能であり、ステープラはパッケージや輸送のためユーザモードに リセットされる。パッケージのため、アンビルはステープルカートリッジから離しておく ことが望ましい(必須ではない)。このため、ホーミングシーケンスをプログラミングし て、パッケージや輸送のため電力を切る前に、アンビルをステープルカートリッジから(例えば) 1 c m離して配置するようにする。使用前に、トロカールは伸長され、アンビル は取り外される。例えばステープラが結腸を切開するのに用いられる場合、トロカールは ハンドルに引き戻され、ハンドルが肛門経由で結腸内に、切開部の下流側へと挿入され、 一方でアンビルは腹腔鏡用切開部から切開部の上流側へ挿入される。アンビルがトロカー ルに取り付けられ、ステープルが準備できるまで、これら2つのパーツがハンドルの方へ 引き戻される。ステープル射出シーケンスが開始されるが、それは中断可能であり、切開 をステープル留めすると同時に切開の中央で組織を切除し、ステープルの円形リングの真 ん中の開口を切除する。圧迫が所望の圧力範囲、つまり最適組織圧縮(OTC)範囲であ る場合にのみステープルが射出されるように、ステープル射出シーケンスはOTC測定お よびフィードバック制御機構を具える。この範囲または値は、アンビルおよびステープル カートリッジ間で圧迫される組織の周知の性質に基づき、既に周知である。

[00008]

電気ステープラが利用できる処置のいくつかの例は、結腸の切開や胃バイパス手術を含む。この電気ステープラは、様々な異なる技術分野で多くの他の使用例がある。

[0009]

本発明により、前述および他の目的の範囲内で、電気的に駆動される手術器具が提供され、ハンドルと、作動時に、外科処置を行うのに操作可能な作動アセンブリを有する手術用エンドエフェクタとを具え、作動アセンブリの一部は、開始位置と十分に作動した位置との間を動くよう動作可能である。ハンドルは、ハンドル内に全体が配置される自立型の電源と、ハンドル内に全体が配置され、電気駆動式モータと、電源とモータに電気的に接続され、モータを選択的に動作させるコントローラとを有する駆動アセンブリと、モータを可動部分に機械的に接続し、モータが作動すると、可動部分を開始位置と十分に伸長した位置の間のどこかに、選択的に配置するよう操作可能な変速機と、変速機に機械的に連結され、変速機を選択的に中断させ、この中断中に、モータの動作から独立して、可動部分を開始位置の方へ配置する手動解放とを有する。

[0010]

本発明の別の態様により、手術用エンドエフェクタは、手術用線形ステープルエンドカッタであり、可動部分は、少なくともステープル作動および繊維切開スライドを含む。

[0011]

50

10

20

30

本発明のさらなる態様により、駆動アセンブリと変速機は、エンドカッタのステープル 切開機能を作動させるよう操作可能である。

[0012]

本発明のさらなる態様により、電源は、少なくとも 1 のバッテリを含む取り外し可能な バッテリパックである。

[0013]

本発明のさらなる態様により、電源は、4乃至6のCR123またはCR2のパワーセルの直列接続である。

[0014]

本発明の別の態様により、コントローラは、スイッチが第1の状態にあるとき、モータを順方向に回転させ、スイッチが第2の状態にあるとき、モータを逆方向に回転させるよう操作可能なマルチステートスイッチを含む。

[0015]

本発明のさらなる態様により、変速機はモータドライブ側と作動ドライブ側とを有し、 手動解放はその間に連結される。

[0016]

本発明のさらなる態様により、手動解放は、変速機に機械的に配置される。

[0017]

本発明のさらなる態様により、モータドライブ側は、最終ギアを含む一連の回転減少ギアを有し、作動ドライブ側は、少なくとも1のギアと、少なくとも1のギアに連結され、可動部分の少なくとも一部に直接連結されるラックアンドピニオンアセンブリとを有し、手動解放は、少なくとも1のギアと最終ギアとの間に機械的に連結される。

[0018]

本発明の別の態様により、モータは出力ギアを有し、一連のギアは、出力ギアに連結される第1段を有する。

[0019]

本発明のさらなる態様により、一連のギアは、第 1 、第 2 および第 3 段と、モータドライブ側から作動ドライブ側へわたるシャフトを有するクロスオーバギアとを具え、クロスオーバギアは、第 3 段に連結される。

[0020]

本発明のさらなる態様により、一連のギアは、モータドライブ側から作動ドライブ側へわたるクロスオーバシャフトを有するクロスオーバギアを有し、クロスオーバギアは、一連のギアに連結され、キャッスルギアが、クロスオーバシャフトの周りに回転可能に連結固定され、その上を長手方向に移動可能であり、キャッスルギアは、作動ドライブ側の方へ伸長する胸壁を有し、作動ドライブ側の少なくとも1のギアは、胸壁と合致するよう形成される胸壁スロットを有する第1のピニオンを含み、バイアス装置が、クロスオーバギアとキャッスルギアとの間に配置され、作動ドライブ側の方へキャッスルギアにバイアスを付与して、キャッスルギアの第1のピニオンへの選択的な係合を可能にし、これにより、係合時、シャフトの回転で第1のピニオンを回転させ、手動解放は、バイアスを越える反力をキャッスルギアに提供し、手動解放が少なくとも部分的に作動すると、第1のピニオンからキャッスルギアを解放するよう形成され、配置された解放部分を有する。

[0021]

本発明のさらなる態様により、作動ドライブ側の少なくとも1のギアは、第2のピニオンシャフトを有する第2のピニオン段と、第1のピニオンに連結され、第2のピニオンシャフトに回転固定される第2のピニオンギアと、第2のピニオンシャフトに回転可能に取り付けられる第3のピニオンとを有し、第3のピニオンは、ラックアンドピニオンアセンブリのピニオンであって、回転時、そのラックを長手方向に動かす。

[0022]

本発明の別の態様により、手動解放は、解放部分がバイアスより小さい反力をキャッスルギアに提供している休止状態と、解放部分がバイアスより大きい反力をキャッスルギア

10

20

30

40

に提供し、胸壁を胸壁スロットの外に動かす第 1 の部分作動状態と、手動解放がピニオンを回転させ、ラックを退避方向へ長手方向に動かす第 2 の部分作動状態とを有する。

[0023]

本発明のさらなる態様により、作動駆動側の少なくとも1のギアは、少なくとも1の解放ギアを具え、第1のピニオンは、少なくとも1の解放ギアに直接接続され、回転時、少なくとも1の解放ギアを回転させる。

[0024]

本発明のさらなる態様により、作動駆動側の少なくとも1のギアは、第1段および第2段の解放ギアを具え、第1のピニオンは、第1段の解放ギアに直接接続され、回転時、第1および第2の解放ギアを回転させる。

[0025]

本発明に付随する態様により、手動解放は、ハンドルに回転可能に接続される手動解放 レバーを具え、一方向ラチェットアセンブリを有し、少なくとも 1 の解放ギアが、ラチェットアセンブリに直接接続されるシャフトを有し、レバーが少なくとも部分的に作動され ると、レバーに対応して回転し、レバーが作動されないと、レバーとは独立して回転する

[0026]

本発明の目的とともに、手術器具を操作するための方法がまた提供され、ハンドル内に全体が配置される自立型の電源を有する手術器具の変速機に、手動解放を機械的に連結するステップを含み、変速機は、ハンドル内の電気駆動式モータの動作を、ハンドルに連結される手術用エンドエフェクタの一部の動作に変換し、一部は、開始位置と十分に作動した位置の間のどこかに動くよう操作可能であり;手動解放を用いて、変速機を選択的に中断させ、この部分をモータ動作と独立して、開始位置の方へ動かすステップとを含む。

[0027]

本発明により、前述および他の目的の範囲内で、手術器具が提供され、手術器具を操作する方法を含み、手術器具ハンドルの遠心端に手術用エンドエフェクタを提供するステップを含み、前記エンドエフェクタは、作動時、外科処置を行うよう操作可能な作動アセンブリを有し、前記作動アセンブリは、開始位置と十分に作動した位置との間を動くよう操作可能な部分を有し、ハンドル内に全体が配置される自立型の電源と電気的に駆動されたモータとを配置し、モータとコントローラを選択的に操作するためにモータコントローラを選択的に操作するためにモータコントローラを選択的に操作するためにモータコントローラを正の間のどこかに可動部分を選択的に配置するよう操作可能な変速機を介して、モータを可動部に機械的に連結させ、変速機を選択的に中断させ、この中断中に、モータ動作と独立して、可動部分を開始位置の方へ配置するステップとを含む。

[0028]

本発明の特徴として考えられる別の構成が、添付のクレームに記載されている。

[0029]

以下に本発明を可換部品の暗号認証を用いた電気自己駆動式手術器具として図示し説明するが、これに拘わらず、図示された詳細に限定されるべきではなく、本発明の範囲およびクレームの均等の目的や範囲を逸脱することなく、様々な変形および構造的な変更を施すことが可能である。

[0030]

本発明の構造および動作方法は、しかしながら、その付加的な目的およびその利点とと もに、添付の図面を参照した場合に、以下の実施例の説明により最もよく理解されるであ ろう。

【図面の簡単な説明】

[0031]

本発明の実施例の利点が、添付の図面を参照しながら、好適な実施例についての以下の詳細な説明から明らかとなる。

【図1】図1は、本発明にかかる電気ステープラの例示的実施例の側部からみた斜視図で

10

20

30

50

40

20

30

40

50

ある。

- 【図2】図2は、図1のステープラの側部断面図であり、ハンドル本体の右半分と近位の 基幹プレートが除去された状態を示す。
- 【図3】図3は、図1のステープラのアンビル制御アセンブリの分解斜視図である。
- 【図4】図4は、図3のアンビル制御アセンブリの拡大分解断面斜視図である。
- 【図5】図5は、図1のステープラのステープル射出制御アセンブリをその後側から見た部分斜視図である。
- 【図6】図6は、図1のステープラのステープル射出制御アセンブリの分解斜視図である
- 【図7】図7は、図6のステープル射出制御アセンブリの拡大分解部分斜視図である。
- 【図8】図8は、図1のステープラのハンドル本体部の下から見たアンビル制御アセンブリの部分水平断面図である。
- 【図9】図9は、図8のアンビル制御アセンブリの近位部から見た部分拡大水平断面図である。
- 【図10】図10は、図8のアンビル制御アセンブリの中間部の下から見た部分拡大水平 断面図である。
- 【図11】図11は、図8のアンビル制御アセンブリの遠位部の下から見た部分拡大水平 断面図である。
- 【図12】図12は、図1のステープラのハンドル本体部の右側から見た部分垂直断面図である。
- 【図13】図13は、図12のステープラの近位ハンドル本体部の右側から見た部分拡大 垂直断面図である。
- 【図14】図14は、図12のステープラの中間ハンドル本体部の右側から見た部分拡大 垂直断面図である。
- 【図15】図15は、図14のステープラの中間ハンドル本体部の右側から見たさらに拡大した部分垂直断面図である。
- 【図16】図16は、図12のステープラの遠位ハンドル本体部の右側から見た部分拡大 垂直断面図である。
- 【図17】図17は、図1のステープラのアンビルの一部の斜視図である。
- 【図18】図18は、図1のステープラの、アンビルと、ステープルカートリッジと、フォーススイッチと、着脱式カートリッジ取付アセンブリとを具える着脱型ステープラアセンブリの部分断面図である。
- 【図19】図19は、図1のステープラのハンドル本体部の上から見たアンビル制御アセンブリの部分水平断面図であり、アンビルロッドが十分に伸長した位置にある状態を示す
- 【図20】図20は、図1のステープラのハンドル本体部の、ハンドル本体部の左側から見た側面図であり、左ハンドル本体と回路ボードを取りのぞかれアンビルロッドが完全に伸ばした位置にある状態を示す。
- 【図21】図21は、図20のステープラのハンドル本体部の側面図であり、アンビルロッドが1cmのアンビル閉じ位置にある状態を示す。
- 【図22】図22は、図1のステープラのハンドル本体部の上から見たアンビル制御アセンブリの部分水平断面図であり、アンビルロッドが安全ステープル射出位置にある状態を示す。
- 【図23】図23は、図1のステープラのハンドル部の上から見たアンビル制御アセンブリの部分水平断面図であり、アンビルロッドを完全に引っ込めた位置にある状態を示す。
- 【図24】図24は、図1のステープラのハンドル本体部の上から見た射出制御アセンブリの部分水平断面図である。
- 【図25】図25は、図24の射出制御アセンブリの近位部の上から見た部分拡大水平断面図である。
- 【図26】図26は、図24の射出制御アセンブリの中間部の上から見た部分拡大水平断

面図である。

- 【図27】図27は、図24の射出制御アセンブリの遠位部の上から見た部分拡大水平断面図である。
- 【図28】図28は、図1のステープラのステープルカートリッジ取り外しアセンブリの、陰影付の一部透過した部分拡大図である。
- 【図29】図29は、図1のステープラのステープルカートリッジ取り外しアセンブリの、陰影付の一部透過した部分拡大図である。
- 【図30】図30は、本発明にかかる医療器具の可換部品用の暗号化回路の一例の概略回路図である。
- 【図31】図31は、多様な負荷において図32のピニオンがラックを動かすスピードを示すバーグラフである。
- 【図32】図32は、ギアボックスとラックの間の本発明にかかるギアトレインの簡略化した例示部分の部分斜視図である。
- 【図33】図33は、エンドエフェクタの例示的実施例の間接部の遠位端部の部分垂直長 手断面図であり、内側チューブ、プッシュロッドブレードサポート、アンビル、閉鎖リン グ、およびステープルスレッドの約半分を取り除いた状態を示す。
- 【図34】図34は、本発明にかかる電源用のスイッチングアセンブリの一例の概略回路図を示す。
- 【図35】図35は、本発明にかかるモータの前進および後退制御用のスイッチングアセンブリの一例の概略回路図を示す。
- 【図36】図36は、本発明にかかる、電源とモータの前進および後退制御用のスイッチングアセンブリの別の例の概略回路図である。
- 【図37】図37は、本発明にかかる装置の左側面図であり、外側シェルが除去された状態を示す。
- 【図38】図38は、図37の装置の一部の拡大左側面図であり、左側フレームが除去された状態を示す。
- 【図39】図39は、図37の装置の右側面図である。
- 【図40】図40は、図38の装置の一部の拡大右側面図であり、右側フレームが除去された状態を示す。
- 【図41】図41は、図40の装置の一部の右後方から見た斜視図である。
- 【図42】図42は、図40の装置の一部の背面図である。
- 【図43】図43は、図40の装置の一部の左後方から見た斜視図であり、第1乃至第3のステージカバーが除去された状態を示す。
- 【図44】図44は、図40の装置の一部の右側上方から見た斜視図であり、電源が除去された状態を示す。
- 【図45】図45は、図44の装置の一部の斜視図であり、第1の中間部分での手動解放 レバーと分離位置でのキャッスルギアを示す。
- 【図46】図46は、図45の装置の一部の斜視図であり、第2の中間部分での手動解放 レバーを示す。
- 【図47】図47は、図46の装置の一部の上面図であり、第3の中間部分での手動解放 40 レバーを示す。
- 【図48】図48は、手動解放アセンブリの右側から見た拡大斜視図であり、第2のステージ解放ギア、2つのカムプレート、および上方の歯止めされない位置で爪が外された爪ばねを示す。
- 【図49】図49は、正面右側の下から見た手動解放レバーの斜視図である。
- 【図50】図50は、右後方側の下から見た手動解放レバーの斜視図である。
- 【図51】図51は、左後方側の下から見た手動開放レバーの斜視図である。
- 【図52】図52は、左側から見たカムプレートの斜視図である。
- 【図53】図53は、右側から見たキャッスルギアの斜視図である。
- 【図54】図54は、左側から見た4段ピニオンの斜視図である。

20

10

30

30

【図55】図55は、図44の装置の一部の正面右側上方から見た斜視図であり、爪カムに対する爪を示す。

【図56】図56は、図55の装置の一部の斜視図であり、爪カムから外され、ラチェットギアに対向させた爪と、分離位置でのキャッスルギアとを示す。

【図57】図57は、図44の装置の一部の正面左側上方から見た斜視図であり、中間位置での手動解放を示す。

【図58】図58は、図57の装置の一部の斜視図であり、別の中間位置での手動解放を示す。

【図59】図59は、図40の装置の一部の拡大右側正面図であり、非作動位置でのエンドエフェクタ制御装置を示す。

【図60】図60は、図59の装置の一部の拡大右側正面図であり、部分的に作動された位置でのエンドエフェクタ制御ハンドルを示す。

【図61】図61は、図37の装置の一部の軸接続部分の正面右側上方から見た拡大斜視図であり、フレームに固定される取り外し可能なエンドエフェクタを示す。

【図62】図62は、図61の軸接続部分の拡大斜視図であり、フレームからエンドエフェクタシャフトを取り外せるよう取り外された軸固定装置を示す。

【図63】図63は、図37の装置の外側シェルの左半分の内側の側面図である。

【図64】図64は、図37の装置の外側シェルの右半分の内側の側面図である。

【図65】図65は、図37の装置の外側シェルの右半分の外側の側面図である。

【図66】図66は、図37の装置の外側シェルの左半分の外側の側面図である。

【発明を実施するための最良の形態】

[0032]

本発明の複数の態様が、本発明の特定の実施例にかかる以下の説明および関連する図面に開示される。本発明の目的または範囲を逸脱することなく、代替的な実施例を考案することもできる、さらに、本発明の実施例における公知の要素は、本発明の重要な詳細部がぼやけないよう詳細に説明しないかすることとする。

[0033]

本発明を開示し説明する前に、ここに使用される用語は、特定の実施例を説明するためだけであって、限定するものではないことを理解されたい、本明細書および添付のクレームにおいて、単数形「1の(a)(an)」および「前記(the)」は、文脈が違う意味を明確に示していない限り複数形も含むものとする。

[0034]

本明細書では、クレームとともに本発明の新規と思われる特徴を規定していくが、これは添付の図面に関する以下の説明とともに考慮した場合により理解されるものであり、ここでは同じ参照番号が持ち越されるものとする。図面における図は、縮尺通り描かれていない。さらに、これらの図は、コンピュータ援用デザインのコンピュータプログラムを用いて作成されている。このプログラムは、影付または着色された図からワイヤフレーム図へと、何度も特定の構造線および/または面を除去する。したがって、図面は概略として扱われるべきであって、本発明の特徴の説明のために用いられる。

[0035]

図面を詳細に参照すると、最初に、特に図1、2において、電気式手術用円形ステープラ1の実施例が示されている。本出願では、理解の容易のために、電気駆動式のハンドルを円形手術用ステープルヘッドに付けている。本発明は円形ステープラに限定するものではなく、例えば線形ステープル装置など、様々な手術用ステープルヘッドに適用することができる。このような例示的な実施例は、特に、図37以降に記載されている。

[0036]

電気ステープラ1は、3つのスイッチを有するハンドル本体10を具えている:アンビル開スイッチ20と、アンビル閉スイッチ21と、ステープル射出スイッチ22とである。これらの各スイッチは、ステープラ1のステープル機能を実現するよう回路設計された回路ボード500(図12参照)に電気的に接続されている。この回路ボード500は、

10

20

30

40

ハンドル本体10に内蔵された電源600に電気的に接続されている。一実施例では、電源600として2-6個のリチウムCR123またはCR2電池を用いる。例えば充電式バッテリや、送電線に接続された電力コンバータなど、他の電源の実施例も可能である(後者の実施例では、ステープラは自家動力または自己独立式ではない)。ここで用いられる用語「自家動力」または「自己独立式」は、電源(600)について用いられる場合は交換可能であり、この電源が完全かつ独立したユニットであってそれ自体が外部電源を用いることなく自力で動作可能であることを意味する。例えば、使用中、送電線にプラグされた電気コードを有する電源は、自家動力でも自己独立式でもない。

[0037]

図に示す回路ボード 5 0 0 の導電ワイヤまたは導電配線は、例えばオン / オフスイッチ 1 2、組織圧迫インジケータ 1 4、アンビルおよび射出スイッチ 2 0、 2 1、 2 2、回路ボード 5 0 0、および電源 6 0 0 など、ステープラ 1 のすべての電子パーツを接続する。しかしながら、これらのワイヤおよび導電体は、理解と明確化のため図示しない。

[0038]

ハンドル本体 1 0 の遠位端部は、剛性アンビルネック 3 0 の近位端部に連結されている。この連結の反対側、アンビルネック 3 0 の遠位端部には、ステープルカートリッジ 5 0 とアンビル 6 0 をここに着脱可能に取り付ける連結具 4 0 がある。代替的に、ステープルカートリッジ 5 0 は、ステープラ 1 の使い捨て構造として着脱可能でなくてもよい。これらの連結について、以下により詳細に説明する。

[0039]

図2は、ハンドル本体10の右半分13と回路ボード500を除去したハンドル本体10を示す。以下に説明するように、近位の基幹プレート70も図2で除去されており、右側から見たハンドル本体10の内部要素が見えるようになっている。図2で見えるものは、ハンドル本体10内に2つの内部要素の軸があることである。第1の軸は、図2において比較的水平方向のステープル制御軸80である。このステープル制御軸80は、ステープルの動作を制御する要素が位置する中心線である。第2の軸はアンビル制御軸90であり、前記ステープル制御軸80に所定の角度で配置される。このアンビル制御軸90は、アンビルの動作を制御する要素の中心軸である。これらの軸80、90を分けることにより、電気ステープラ1が、手術者の手におさまるのに十分に小さく、必要なすべての方向や向きの移動から手術者の制限となるような多くのスペースを占めるものではないハンドル本体10を用いて駆動可能である。

[0040]

ハンドル本体10の内部には、すべての電機部品の電力(例えばバッテリ電力)を制御するオン/オフスイッチ12(例えば、グレネードピン)と、組織圧迫インジケータ14とが示されている。この組織圧迫インジケータ14は、以下により詳細に示すように、施術者にアンビル60とステープルカートリッジ50の間の組織の圧迫が予め設定された圧迫力を超えたか否かを示す。このインジケータ14は、2006年5月19日に出願され継続中の米国暫定特許出願第60/801,989号、名称「フォーススイッチ」(その全体が参照として本書に組み込まれている)に開示されたフォーススイッチ400に付随している。

[0041]

アンビル制御軸90に沿った要素は、アンビル制御アセンブリ100を構成する。アンビル制御フレーム110がアンビル制御軸90に整列しており、アンビル制御アセンブリ100の様々な部品をそこに収容および/または固定している。このアンビル制御フレーム110は、近位のマウント112と、中間マウント114と、遠位のマウント116とを具える。これらのマウント112、114、116はそれぞれ、制御フレーム110に取付可能または一体構成である。例示的実施例では、製造の容易性のために、近位のマウント112は2つの半分からなりフレーム110と別であり、中間マウント114はフレーム110とは別である。

[0042]

10

20

30

20

30

40

50

アンビル制御アセンブリ 1 0 0 の近位端部には、アンビルモータ 1 2 0 がある。このアンビルモータ 1 2 0 は、駆動モータと、本来のモータ回転スピードを所望の出力駆動軸スピードに変換するのに必要なギアボックスとを具える。この例では、駆動モータは本来のスピードが約 1 0 , 0 0 0 r p m であり、ギアボックスはこのスピードを、アンビルモータ 1 2 0 の遠位端部から延びる駆動軸 1 2 2 において約 5 0 乃至 7 0 r p m に下げる。このアンビルモータ 1 2 0 は、近位のマウント 1 1 2 の内部で長さ方向および回転方向ともに固定されている。

[0043]

モータシャフトカプラ 1 3 0 が、駆動軸 1 2 2 を回転可能に固定しており、駆動軸 1 2 2 の回転がモータカプラ 1 3 0 の対応する回転へと変換される。

[0044]

カプラ130の遠位には、回転ナットアセンブリ140が位置している。このナットアセンブリ140は、本実施例では、近位の半ナット141と、この近位の半ナット141に超軸方向に固定される回転可能な遠位の半ナット142の2つの部品でなる。これらの半ナット141、142は、望む場合は一体であってもよい。ここで、製造の容易さのために2つの半分として図示している。このナットアセンブリ140の近位端部は、カプラ130の遠位端部に回転可能に固定されている。これら2つの連結部品を長さ方向に通る長さ方向に回転するサポートが、中間マウント114および遠位のマウント116に支持されている。

[0045]

近位のナットブシュ150(図3参照)が中間マウント114と近位の半ナット141の間に配置され、遠位のナットブシュ160が遠位のマウント116と遠位の半ナット142の間に配置され、これらの部位に効果的にスピンしハンドル本体10とアンビル制御フレーム110内で摩擦がないようにしている。これらのブシュ150、160は、様々なベアリング材料であってもよく、例えば、青銅などの金属やナイロンなどの重合体であってもよい。回転するナットアセンブリ140とカプラ130の長手方向の摩擦をさらに低減すべく、近位のブシュ150と近位の半ナット141の間にスラストワッシャ170が配置されている。

[0046]

カプラ130とナットアセンブリ140の回転は、ネジロッド180の前進および収縮に用いられ、これがアンビル60を伸ばしたり縮めたりする。このネジロッド180は、図3、4にさらに詳細に分解図で示され、以下により詳細に説明される。ロッドサポート190がアンビル制御フレーム110の遠位端部に取り付けられており、これがナットアセンブリ140の支持面を伸ばしてアンビル制御軸90に整列しているロッド180が保持される。ロッドサポート190は、これを通るロッド180の部分の外面形状にする平滑な内面形状を有する。このように形状を合わせると、ロッド180がサポート190を磨擦なく通るのを改善すべく、例示的実施例では、円筒形のロッドブシュ192がサポート190を摩擦なく通るのを改善すべく、例示的実施例では、円筒形のロッドブシュ192がサポート190の内部に収まっているため図2では見えない。しかしながら、このロッドブシュ192は、図3、4の分解図では見える。ロッドブシュ192が正しい位置にあると、サポート190の内面形状がロッドブシュ192の外面形状に対応し、ロッドブシュ192の内面形状がこれを通るロッド180の部分の外面形状に対応する。このロッドブシュ192

[0047]

ステープル制御軸80に沿った要素は、ステープル制御アセンブリ200を構成する。ステープル制御アセンブリ200は、図5に近位側斜め上から見た斜視図を示す。このステープル制御アセンブリ200の近位端部は、ステープルモータ210を具える。このステープルモータ210は、駆動モータと、本来のモータ回転スピードを所望の回転スピードに変換するのに必要なギアボックスとを具える。この例では、駆動モータは本来のスピ

20

30

40

ードが約20,000 r p m であり、ギアボックスはこのスピードを、ギアボックスの遠位端部の出力駆動軸において約200 r p m に下げる。この駆動軸212は図5には現れていないが、図6、7の分解図に示されている。

[0048]

ステープルモータ2 1 0 は、長手方向と回転方向ともにモータマウント2 2 0 に固定されている。モータマウント2 2 0 の遠位端部は、中間連結マウント2 3 0 となっている。この連結マウント2 3 0 は、例えば図 6 に示す遠位プレート2 3 2 を具える。遠位プレート2 3 2 は、連結マウント2 3 0 から移動可能であり、回転スクリュ2 5 0 がこれらの間に保持されている。この回転スクリュ2 5 0 がステープルカートリッジ 5 0 からステープルを射出する駆動力として作用する。駆動軸2 1 2 の回転運動を回転スクリュ2 5 0 に変換する効率は、ステープラ1が必要とする2 5 0 ポンド以上の縦のステープル射出力を供給するための能力を実質的に低減する要素となる。したがって、スクリュ2 5 0 の実施例は、アクメ形状ネジを有する。

[0049]

ここで、駆動軸212からスクリュ250の回転を効率的に結合するのに2つの例示的な方法がある。第1は、ステープルモータ210が「ゆるく」ハンドル本体10に規定されるチャンバ内に収容されており、回転しないが半径方向に動くことができ、したがって長手方向に安定しているが自由に動くことができる。この構成では、ステープルモータ210は、「自力で中心を探し」て駆動軸212の軸をスクリュ250の軸に整列させ、本実施例ではこれもまたステープル制御軸80である。

[0050]

駆動軸212とスクリュ250を整列させる第2の実施例が、例えば図1乃至5に示されている。本実施例では、フレキシブル結合部240の近位の端部が、(長手方向および回転方向ともに)駆動軸212に固定されている。この連結は、駆動軸212の遠位端部をフレキシブル結合部240の近位ボア241内にはめ込むことで達成される。図12を参照されたい。次に駆動軸212は、近位の止めネジ213でそこに固定される。このスクリュ250は、フレキシブル結合部240の遠位ボア242内に適合し遠位の止めネジ252でそこに固定される近位の伸長部251を具える。これらの図面は、フレキシブル結合部240がその中間部に凸部を設けて示すことに留意されたい。連結部240の一実施例では、この部品はアルミニウムまたは成型プラスチックであり、その中央部分の周囲に螺旋形またはヘリックス形の切り欠きを有する。この構成において、連結部240の一端部は他端に対していかなる放射方向(360度)に動かすことができ(ジンバル内のように)、これにより駆動軸212とスクリュ250の中心軸を効果的に整列させるべく望み通り曲げることができる。

[0051]

スクリュ250の近位の伸長部251は、中間の連結マウント230内にあり、これを通るボア231の直径より実質的に小さい径を有する。このボア231は、その遠位側に直径が2段階大きくなっている。最初の直径が大きくなる段階は、近位の半径スクリュブシュ260に適合するサイズであり、中間連結マウント230より軟質な材料で形成みであり、長手方向の推力を吸収したり伝達したりするものではない。第2の直径が大きるおり、長手方向の推力を吸収したり伝達したりするものではない。第2の直径が大である。このスラストベアリング270の一実施例では、近位と遠位のプレートで、ベアリンがるる。このスラストベアリング10では、近位と遠位のプレートで、ベアリング10では、ステープルカートリッジ50内のステープルを射出するときに長手方向に250ポンドまでの力がかかる際に、駆動軸212の方にかかる長手方向の推力のすべてを吸収する。スクリュ250の近位の伸長部251は、スクリュプシュ260とスラストベアリング270の各内面ごとに直径サイズが異なる。モータマウント220と連結マウント230は、したがって、フレキシブル連結部240を間に保持する2つの装置を形成する。

[0052]

20

30

40

50

回転スクリュ250は、近位の半径スクリュブシュ260と似た遠位の半径スクリュブシュ280とともに、遠位プレート232内に保持されている。このため、スクリュ250は遠位プレート232内で回転自在である。スクリュ250の回転を線形の遠位動作へと変換すべく、スクリュ250は移動ナット290にねじ込まれる。このナット290の動きは、ステープルの動作完了に必要な移動量に制限されており、換言すれば、ナット290はステープルカートリッジ50とアンビル60との間で閉じたステープルを形成さるともに、もしあれば、ステープルカートリッジ50内で切断ブレードを伸長させ、さらにこれを引っ込めるのに十分な距離だけ移動する必要がある。ナット290が最も遠位の位置にあるとき、ステープルは、ステープルカートリッジ50たでかた290が最も遠位の位置にあるとき、ステープルは、ステープルカートリッジ50とアンビルの間に挟まれた組織を通ってこれを留め、もしあればナイフが、切断すべき組織を完全に通過する。ナット290の最も遠位の位置は、遠位プレート232の位置により制限される。したがって、スクリュ250のネジの長手方向の長さと、遠位プレート23

[0053]

スクリュ250とナット290の摩擦を低減すると、カートリッジプランジャ320を介してステープルカートリッジ50へ伝達される力の合計ポンドが有意に低減するのに寄与する。このため、スクリュ250およびナット290の材料と、スクリュ250のピッチとを最適なように選択することが望ましい。ナット290の製造に低摩擦ポリマを使用すると、カートリッジプランジャ320の遠位端部に、ステープルを有効に出すのに必要な力の量である、約250ポンドの長手方向の力を伝達するのに十分な摩擦が低減される。この所望の特性を示す2つの特定の材料の例は、この技術分野でDELRIN(登録商標)AF混合Aceta1(TEFLON(登録商標)繊維をDELRIN(登録商標)アセタール樹脂に均一に分散させたものを組み合わせた熱塑性材料)と、RULON(登録商標)(TFEフルオロカーボンから合成される)または他の同様の低摩擦ポリマである。

[0054]

ナット結合ブラケット300が、長さ方向にナット290に固定されており、これはナット290と一緒に移動する。このナット結合ブラケット300は、比較的ソフトで、つるつるしたナット材料に支持を提供する。図示する実施例では、このブラケット300は、ナット290の外形に対応する形状の内部空洞を有する。したがって、ナット2900 動きはナット結合ブラケット300の形状は、本実施例では、これを取り囲む要素や、伝達すべき長手方向の力によって決定する。例えば、ナット290の遠位には、内部に遠位プレート232を受ける形状の内部空洞302がある。このナット結合ブラケット300はまた、強化ロッド310を内部に受ける遠位のハウシング304を具える。この強化ロッド310は、長手方向の指示を増大し、ナット290とカートリッジプランジャ320(図5参照)の連結の一部を構成し、これはハンドル本体10とステープルカートリッジ50の間の最後の可動リンクである。ナット結合ブラケット300とロッド310の連結を強化している。

[0055]

ステープラ1の多様な要素が互いに連結されて、主軸または脊椎部を構成する。この主軸は、多方面への安定性を提供するフレームであって、(近位から遠位まで)4つの主たる部品からなる:アンビル制御フレーム110と、近位の主軸プレート70と(図3、4、6、7に示す)、遠位の主軸プレート340と、アンビルネック30とである。これら4つの部品はそれぞれ、長さ方向と回転方向ともに互いに固定されており、この順番でハンドル要素の残りが取り付けられる骨格を構成する。これらの要素の縦の支持はハンドル本体10の内面輪郭により達成され、一実施例においてこれは左半分11と右半分13の2つの半分で構成される。代替的に、支持は、打ち抜かれるかハンドル半分11、13と

組み合わさった単一のフレームであってもよい。

[0056]

アンビル制御アセンブリ 1 0 0 の機能が、図 1 7 乃至 2 7 に関連して開示されている。図 1 7 に示すように、ステープラ 1 でステープル処置を行うには、アンビル 6 0 全体をステープラ 1 から取り外す。アンビル開スイッチ 2 0 を押すと、ステープルカートリッジ内に収容されスクリュ 2 5 0 に長さ方向に固定的に連結されたトロカールチップ 4 1 0 の遠位端部が伸びる。すると、トロカールチップ 4 1 0 の頂部が、留められる組織を貫通あるいは穿刺する。この時点で利用者は、アンビル 6 0 を組織の反対側からトロカールチップ 4 1 0 に付け替えて、そこにアンビル 6 0 を固定することができる(図 1 8 参照)。アンビル閉スイッチ 2 2 は、アンビル 6 0 をステープルカートリッジ 5 0 に対して閉じるのを開始し、その間のアンビルカートリッジギャップ 6 2 に組織を挟むように作動する。

[0057]

アンビル60のトロカールチップ制御動作が行われるかを説明するために、図8乃至10、14、15、18を参照されたい。図15の点線で示すように、ロッドガイドピン143が遠位の半ナット142の中央ボア144内に位置づけられる。ネジロッド180が回転ナット140、141、142、に螺入するにつれ、ピン143はネジ182の近位端部を捕らえて内部にピン143を取り囲む。これにより、ナット140がネジ182の近位のピン143とともに回転すると、ナットの回転方向により、ロッド180が近位側または遠位側に移動する。ネジ182は図14、15に示すように可変ピッチを有し、アンドル60を異なる長手方向の速度で進ませる。ピン143が長い(低い)ピッチのネジ部183内にあるとき、アンビル60は長さ方向に早く移動する。これと対象に、ピン143が短い(高い)ピッチのネジ部184内にあるとき、アンビル60は長さ方向にゆっくり進む。ピン143は、長いピッチのネジ部183内でネジ182が接触する唯一の部分であることに留意されたい。このように、ピン143は、この時点ではロッド180に作用する長手方向の力全体にさらされる。このピン143は、このような力に耐えるのに十分な強度があるが、アンビル60が間の組織の周りで閉じる際に生じるすべての長さ方向の力に耐えるほどではない。

[0058]

図14に示すように、ピッチが短いネジ部184に、近位の半ナット141の中央ボア144の近位端部の対応する内側ネジ145と係合するよう、ロッド180が設けられている。ピッチが短いネジ部184が内側ネジ145に係合すると、ネジ部184の側面全体が内側ネジ145に接触する。この接触面は、ピン143とネジ182のいかなる部分との接触よりも大きく、このため、アンビル60が閉じる際、特にアンビル60が組織の周りでステープル射出状態にあるときに発生する長さ方向の力のすべてに耐えることができる。例えば、本実施例では、ピン143は約30乃至50ポンドの長さ方向の力を受ける。これは、400ポンドまでの長さ方向の力に耐えうるネジと比較すると、約10対1の差がある。

[0059]

アンビル制御アセンブリ100の代替的な実施例では、ロッド180の複合的なネジ全体が取り除かれる。このような場合、ロッド180は単一のネジピッチであり、アンビルモータ120が単一ネジロッド180の長さ方向の位置によって、(回路ボード500の関連するプログラミングを通じて)異なる速度で駆動される。

[0060]

モータ120、210を駆動する様々な実施例で、制御プログラムは様々な形態をとりうる。一実施例では、バッテリ駆動回路ボード500のマイクロコントローラがパルス変調(例えばパルス幅、パルス周波数)をかけて、いずれかまたは双方のモータを駆動してもよい。さらに、ステープラ1はデューティサイクルが低い装置であり、または使い捨て装置であるため、構成要素を許容の製造スペックを超えて駆動することができる。例えば、ギアボックスはその指定速度より上のトルクをかけることができる。また、例えば6ボルトモータなどの駆動モータを、例えば12ボルトで駆動してもよい。

10

20

30

20

30

40

50

[0061]

アンビル60が伸びた位置から組織を圧迫しないか僅かに圧迫する位置への閉動作は、挟まれた組織にダメージを与えることなく迅速に行われる。このため、ピッチの長いネジ部分183により、利用者はアンビル60を組織へと、組織圧迫前状態に素早く閉じることができる。その後、好ましくは組織をゆっくりと圧迫し、これにより利用者が組織を過度に圧迫してしまうのを回避することができる。このようにして、この後者の動作範囲において短いピッチのネジ部184を利用して、利用者が大きな度合いで制御することができる。この圧迫中、図18に示し継続中の米国暫定出願番号第60/801,989号で説明されているフォーススイッチ400を用いて、組織圧迫インジケータ14(および/または回路ボード500の制御回路へ)を介して利用者に組織がフォーススイッチ400内のスプリング420の予荷重より大きな力で圧迫されているかを示すことができる。図18は、米国暫定出願番号第60/801,989号の第1実施例に記載された通常は開いた状態のフォーススイッチ400の実施例を示すことに注意されたい。組織の圧迫を測定するのにひずみゲージを用いてもよい。

[0062]

図19乃至23は、アンビル伸長位置(図19乃至20参照)から1cm閉鎖距離位置(図21参照)、ステープル射出可能位置(図22参照)、および最終的にアンビル完全閉鎖位置(図23参照)へのロッド180の動作を示す。ロッド180の移動は、ロッド180のカム面アクチュエータ185の一部と、ハンドル本体10内に位置された一連のマイクロスイッチの動作レバーまたはボタンとの間の接触により、(回路ボード500を介して)電気的に制御されている。

[0063]

ロッド180(およびそれ故アンビル60)が完全に伸びた位置にあるとき、ロッド完 全伸長スイッチ610の動作レバーをアクチュエータ185が押すように、ロッド完全伸 長スイッチ610(図19参照)がハンドル本体10の遠位部に配置されている。1cm スイッチ612がハンドル本体10の中間位置に配置され(図20、21参照)、ロッド 180(およびそれ故アンビル60)が完全閉鎖位置の1cm以内にある場合に、ロッド 1 8 0 の 1 c m カム面部分 1 8 6 が 1 c m スイッチ 6 1 2 の動作ボタンを押さないように している。図22に示すように、1cm閉鎖距離を経た後、カム面アクチュエータ185 はステープル射出可能スイッチ614に接触する。アクチュエータ185の下端部は、図 2.2 乃至2.3 に示すように、ステープル射出可能スイッチ6.1.4 のボタンに対して前後両 方の側に傾斜しており、このボタンを動作させる2つの傾斜の部分の間の距離(あるいは 、その平坦な部分のみ)は、ステープルカートリッジ50内におけるステープルの許容し うるステープル形成範囲(すなわち安全射出長さ)に対応する。したがって、ステープル 射出可能スイッチ614のボタンが最初に押されるとき、アンビル60とステープルカー トリッジ50の間の距離は、ステープルを成功裏に射出して閉じる最大範囲である。この ボタンが押されると、アンビル60の分離距離62(図18参照)は、安全ステープル射 出範囲内に留まる。しかしながら、アクチュエータ185がボタンの近くに位置してステ ープル射出可能スイッチ614のボタンが最早押されなくなった場合、ステープル治療に は距離が短すぎるため、ステープルは射出されない。図23は、ロッド180が最も近位 の位置にある状態であり、アクチュエータ185の上端部がロッド完全引き戻しスイッチ 616のレバーを閉じることにより示されている。このスイッチ616が作動すると、回 路ボード500のプログラムが、モータ120がロッド引き戻し方向に切り替わるのを防 ぎ、換言すると、これはロッド180が近位の方向に引き戻される場合の止めスイッチと なる。

[0064]

図2、3、11、12、16は、遠位端部が他の装置に接続されていないロッド180の遠位端部を示す(このためフォーススイッチ400の近位端部に接触する)。連結バンドまたは、ロッド180の遠位端部とフォーススイッチ400の近位端部の間のバンドは、明確化のためにのみ図示しない。一実施例では、このプルバンドは平坦で、アンビルネ

20

30

40

50

ック30を通りフォーススイッチ400の近位端部までカートリッジプランジャ320の 湾曲した下側を横切るべく柔軟である。もちろん、フォーススイッチ400がない場合、 このバンドはアンビル60の近位端部に着脱可能に接続するトロカールチップ410の近 位端部に連結される。

[0065]

ステープル制御アセンブリ200の機能が、図12乃至16、図24乃至27、特に図24を参照して説明される。ステープルモータ210が、モータベアリング222とモータシャフトカバー224との間に保持される。ステープルモータ210の駆動軸212が回転可能にフレキシブル結合部240の近位端部に連結され、このフレキシブル結合部240の遠位端部が回転可能にスクリュ250の近位端部に連結され、これがベアリング260、270、280上で回転する。長手方向に移動するナット290が、結合マウント230と遠位プレート232との間のスクリュ250に螺合している。これにより、駆動軸212の回転が、スクリュ250の対応する回転へと伝達される。

[0066]

ナット結合ブラケット300は、ナット290、強化ロッド310、および射出ブラケット330に長さ方向に固定されている。この射出ブラケット330は、(図示しないステープルドライバを通り)ステープルカートリッジ50(またはステープル)まで延在するカートリッジプランジャ320に長さ方向に固定されている。この連結により、ナット290の長さ方向の動きが、カートリッジプランジャ320の対応する長さ方向の移動に変換される。したがって、ステープル射出スイッチ22が作動すると、ステープルモータ210が十分な回数だけ回転され、ステープルがステープルカートリッジ50から完全に射出される(そして、もしあれば切断ブレードが伸長されアンビル60とステープルカートリッジ50の間の組織を完全に切断する)。後述するように、回路のプログラムは、カートリッジプランジャ320を射出後に引き戻し、アンビルとカートリッジ間の隙間62からステープル射出部品および/またはステープルカートリッジ50のブレードのすべての部分を取り除く。

[0067]

このステープル動作の制御は、再び、回路ボード 5 0 0 にワイヤなどの電機接続を介して連結されたマイクロスイッチを通じて行われる。これらの制御スイッチの最初は、近位のステープルスイッチ 6 1 8 であり、ステープル制御アセンブリ 2 0 0 の引き戻しを制御してこのアセンブリ 2 0 0 の最も近位の位置を規定する。このスイッチを作動させるには、ナット結合ブラケット 3 0 0 の側部に隣接するように、動作プレート 3 0 6 を取り付ける。例えば図 6 、 2 4 を参照されたい。このようにして、ナット 2 9 0 が近位に移動してナット結合ブラケット 3 0 0 上のプレート 3 0 6 が近位のステープルスイッチ 6 1 8 を作動させると、ステープルモータ 2 1 0 への電力が取り除かれてステープル制御アセンブリ 2 0 0 の近位方向へのさらなる移動が阻止される。

[0068]

ステープル制御アセンブリ200の動きを制御する第2のスイッチは、強化ロッド310の遠位の側面の反対側に配置されている。図27を参照されたい。この面において、遠位のステープルスイッチ620と接触する長さ方向に調整可能なカム部材312が設けられている。一実施例では、このカム部材312は、強化ロッド310の遠位のボアに螺合するスクリュである。したがって、ナット290が遠位方向に動いてロッド310のカム部材312が遠位のステープルスイッチ620を作動させると、ステープルモータ210への電力が取り除かれてステープル制御アセンブリ200の遠位方向へのさらなる移動が阻止される。

[0069]

図28、29は、アンビル30の遠位端部の異なるステープルカートリッジ60の取り替えが可能な取り外し可能な連結アセンブリを示す。

[0070]

ハンドル本体10の最も近位のチャンバは、内部に電源600を保持するための空洞を

20

30

40

50

規定している。この電源600は、回路ボード500を介してモータ120、210、およびステープラ1の他の電機部品へと接続されている。

[0071]

ステープラ1の電機部品は、回路ボード500を介した制御に関して説明した。電気ス テープラ1は、上述したように、一実施例では、バッテリ駆動されプッシュボタン20、 2 1 、 2 2 で制御される 2 つの駆動モータ 1 2 0 、 2 1 0 を 具える。 各モータ 1 2 0 、 2 10の移動範囲は、移動の端部と移動に沿った中間位置612、614でリミットスイッ チ610、616、618、620により制限される。モータ120、210の制御ロジ ックは、いくつかの方法で実現することができる。例えば、リレーまたはラダーロジック を用いて、モータ120、210とスイッチ610、612、614、616、618、 620の制御アルゴリズムを規定することができる。このような構成は単純だが、制限さ れた制御方法である。より柔軟な方法は、マイクロプロセッサ式制御システムを用いてス イッチ入力を検知し、スイッチをロックし、インジケータライトを作動させ、データを記 録し、可聴フィードバックを提供し、視覚ディスプレイを駆動し、同定装置(例えば周波 数識別装置(RFID)または暗号識別装置)に問い合わせ、力を感知し、外部装置と交 信し、バッテリ寿命を監視したりすることである。このマイクロプロセッサは、特に複合 電子機械システムのインタフェース用に特別に構築された一体型回路の一部であってもよ い。このようなチップの例は、Atmelによる例えばMega128か、PICによる 例えばPIC16F684を含む。

[0072]

このようなプロセッサへ制御命令を出すソフトウェアが必要である。全体を開発したら、プログラムをプロセッサに書き込み永久的に書き込む。このようなシステムは、制御アルゴリズムの変更が比較的少ない:アップロードされるソフトウェアへの変更は、記述や装置の機械レイアウトを変更することなく、制御とユーザインタフェースを調整する。

[0073]

使い捨て可能な装置では、電源オンの事象は一度きり発生する。このケースにおいて電源オンは、永久的に装置から取り除かれるタブまたは解除具を引っ張ることにより実現する。この取り外しによりバッテリが接触し、装置の電源が入る。

[0074]

装置のいかなる実施例でも、装置の電源が入ると、制御プログラムが実行を開始し、装置を使用可能とする前に、射出サブアセンブリの伸長/収縮および射出の実際の位置の検知を確実にするルーチンに移行し、これはホーミングルーチンと呼ばれる。このホーミングルーチンは、製造者が利用者に輸送する前に実行されてもよい。この場合、ホーミングルーチンが実行され、アセンブリの位置がセットされ、装置が使用可能な状態で利用者に配送される。電源投入時、装置はその位置を確認し、使用可能となる。

[0075]

視覚インジケータ(例えばLED)を用いて、利用者にフィードバックを提供する。プッシュボタンスイッチ20、21、22の場合、作動時に点灯(またはバックライト)され、非作動時に消灯するようにしてもよい。このインジケータは、さらなる情報を利用者に伝達すべく点滅してもよい。ボタン押下後の遅延応答の場合、例えば応答差し迫っている場合に、設定された光の点滅速度を段々早くしてもよい。インジケータはまた、様々な状態を示すために異なる色の光で点灯させることもできる。

[0076]

ステープラ1において、プロセッサに位置情報を提供するリミットスイッチを作動させるためのカムが様々な箇所に用いられている。多様な長さの線形カムを用いると、位置の範囲を設定することができる。代替的に、リミットスイッチの代わりにエンコーダを用いてもよい(絶対的かつ増分のポジショニング)。リミットスイッチは、オフとオンの2値であってもよい。位置情報の2値入力の代わりに、(光エンコーダなどの)エンコーダを用いて、位置情報を提供してもよい。位置フィードバックを提供する他の方法は、サブアセンブリを駆動するモータの端部にパルス発生器を搭載することである。パルスをカウン

トし、モータの回転から線形移動への変換率を知ることにより、絶対的な位置を得ることができる。

[0077]

プロセッサを用いると、保存データの有用性が生まれる。例えば、装置製造番号やソフトウェアの改訂などの重要な、プレロードされた情報を保存することができる。メモリはまた、ステープラ1の使用におけるデータを記録するのに用いてもよい。すべてのボタン押下、すべてのリミットスイッチの遷移、すべての無駄打ち、すべての完了打ちなどを、後に回収して分析するために保存してもよい。データは、プログラミングポートまたはワイヤレスで取得することができる。一実施例では、一連のボタン押下によって装置を診断モードにすることができる。この診断モードでは、技術者がステープラ1の特定のデータを問い合わせたり、特定のデータを伝送/出力させることができる。このような問い合わせへのステープラ1の応答は、LEDの点滅や、ディスプレイ付きの装置の場合は視覚的な文字データ、あるいは電子データの形態とすることができる。上述したように、ひずみゲージを用いてアナログ出力したり利用可能な歪みバンドを設けてもよい。代替的に、付加的な第2のスプリングと支持部材によりこのバンドを機械的に設定してもよい。

[0078]

シングル射出ステープラ1の制御アルゴリズムの例は、以下のステップを含む:

- ・電源オン
- ・ホームポジションを確認し、必要/所望の場合にホームポジションへ移動
- ・伸長/収縮ボタンをエネイブル(点灯)にし、ステープル射出ボタンをディセーブル(消灯)にする
- ・ステープル射出ボタンを完全に伸ばした(アンビルが取り去られた)後にのみエネイブルにし、伸長 / 収縮ボタンをエネイブルにしたままその後収縮させる。
- ・ステープル射出ボタンの作動時、フォーススイッチが作動するまでアンビルを引き戻す
- ・ボタンLEDの点滅により秒読みを開始し、射出サイクルが切迫するごとに点滅速度を速くする。継続的にフォーススイッチを監視し、アンビルを引き戻してフォーススイッチが作動したままとする。
- ・ステープル射出サイクルの間は、どのボタン押下もステープル射出ルーチンを打ち切る
- ・ステープル射出モータの作動前に打ち切りが生じたら、射出サイクルは停止し、アンビルがホームポジションに伸ばされ、ステープル射出ボタンはアクティブのままで再発射可能となる。
- ・あるいは、射出モータの作動時に打ち切りが生じたら、射出サイクルは停止し、射出モータは引き戻され、アンビルがホームポジションに戻り、射出ボタンは非アクティブとなる。したがって、ステープラ(またはステープルカートリッジ)は使用不可となる。
- ・射出の秒読みが終了したら、ステープル範囲制限スイッチの位置が確認される。ステープル範囲制限スイッチが作動したら、それはアンビルが良好なステープル射出範囲にあることを意味し、ステープル射出モータが作動して射出サイクルが進められる。ステープル範囲制限スイッチが作動しない場合、射出サイクルは打ち切られ、アンビルはホームポジションに戻り、ステープル射出ボタンはアクティブのままで再発射可能となる。
- ・ステープル射出が完了したら、アンビルは閉じ位置に維持され、伸長ボタンのみがアクティブのままとなる。アンビルが少なくともホームポジションまで伸びたら、伸長ボタンと収縮ボタンの双方をアクティブにする。ステープル射出ボタンは、ステープル射出が完了したら非アクティブに維持される。

[0079]

上記サイクル例を通して、ボタン押下、スイッチ位置、打ち切り、および / または射出を記録してもよい。

[0080]

外科的処置において、ステープラは 1 方向デバイスである。しかしながらテストモード

10

20

30

40

20

30

40

50

では、テストユーザがトロカール 4 1 0 とアンビル 6 0 を望むまま前後させられることが必要となる。電源オン構造により、利用者がテスト目的のマニュアルモードにできるようになる。このテストモードは解除可能であり、ステープラは使用モードにリセットされてパッケージングや輸送される。

[0081]

パッケージングでは、アンビル 6 0 をステープルカートリッジ 5 0 から離して位置させることが望ましい(不可欠ではない)。このため、パッケージや輸送のために電源を落とす前に、アンビル 6 0 をステープルカートリッジ 5 0 から(例えば) 1 c m離すホーミングシーケンスを設定してもよい。

[0082]

この電気ステープラが荷解きされ手術に利用可能となった場合、利用者はステープラの電源をオンにする(スイッチ12)。ステープル射出位置となり所望の組織圧迫状態となる前にステープルは射出されない。したがって、アンビル / トロカールの伸長 / 収縮機能は唯一使える機能である。この場合、伸長ボタン20と収縮ボタン21が点灯し、射出スイッチ22は点灯しない(すなわちディセーブルである)。

[0083]

患者に使用する前に、トロカール 4 1 0 を伸ばしてアンビル 6 0 が取り外される。ステープラが結腸の吻合に使用される場合、例えば、トロカール 4 1 0 がアンビルネック 3 0 に引き戻され、ステープルカートリッジ 5 0 とアンビルネック 3 0 が肛門経由で結腸内へと、切開部の下流側へと挿入される。アンビル 6 0 は、反対に、上流側の腹腔鏡用切開部から挿入され、切開部の上流側に配置される。アンビル 6 0 はトロカール 4 1 0 に取り付けられ、2 つの部品はステープル可能状態となるまでステープルカートリッジ 5 0 の方へ引き戻される。上述のように、アンビルは実質的に間の組織を圧迫せず、特に、乾燥(desiccate)させない距離まで移動する。この地点で、望んだときにステープル射出が生じる。

[0084]

ステープル射出シーケンスは、ステープル射出スイッチ22を作動させることで開始する。ステープル射出は、射出シーケンス中はいつでも打ち切ることができ、これは動作前(漂白サイクル中)や動作中(ステープル形成の有無に拘わらず)であってもである。ステープル射出が行われる前に組織を圧迫して乾燥させる必要があることが判明してもれため、ソフトウェアは、ステープル射出の秒読みシーケンスを開始するようプログラムされている。このため、ステープル射出スイッチ22の作動後、アンビル60が間の組織の上に閉じ、この組織の圧迫を開始する。このステープル射出シーケンスは、最適組織圧力範囲に圧迫された場合であって、十分な時間が経って圧迫された組織から水分が除去されたプルカートリッジ50の間で圧迫される組織を公知の特性に基づいて予め分かっているイッカートリッジ50の間で圧迫される組織を公知の特性に基づいて予め分かってススイッチは、異なる組織OTC範囲用に調整することができる)。フォーススイッチは、異なる組織OTC範囲用に調整することができる)のフォーススイッチは、異なる組織OTC範囲用に調整することができる)のフォーススイッチは、異なる組織OTC範囲用に調整することができる)のフォースススイッチは、異なる組織OTCの制度である。

[0085]

射出シーケンスが開始すると、ステープル射出スイッチ 2 2 は設定速度で点滅し、その後例えば射出が行われるまで段々早く点滅する。この待ち時間の間に打ち切りが生じなければ、OTC状態が設定された乾燥期間だけ維持され、秒読みの完了後にステープル射出が行われる。円形ステープラで結腸を吻合する例では、切開部のステープル留めは、切開部中央の切開と同時に行われる。この切開はステープルの円形リングの中央の空いた開口が、手術完了後に通常の結腸の動作となるよう開口を設けるのに十分となることを保証する。

[0086]

挟まれた組織から水分が除去されたら、組織の圧迫力は自然に低減する。少しの間、こ

20

30

40

の低減はOTC状態が設定範囲外となりうる。このため、プログラムは、フォーススイッチ400から提供される連続的な測定値に依存する閉ループアンビル圧迫制御を有する。このフィードバックにより、圧迫された組織が処置の間と乾燥してからも暫くOTC範囲内に維持される。

[0087]

ステープル射出サイクルの間、利用者による制御スイッチのいかなる操作もステープル射出ルーチンの打ち切りとなるようプログラムされてもよい。ステープル射出モータ210の作動前に打ち切りが生じたら、射出サイクルは停止し、アンビル60はホームポジションへと伸長され、ステープル射出スイッチ22はアクティブに維持され必要に応じて再発射可能である。あるいは、ステープル射出モータ210の動作中に打ち切りが生じたら、射出サイクルは停止しステープル射出モータ210がアンビル60をそのホームポジションまで伸ばす。この時点で、ステープル射出スイッチ22は非アクティブとされる。したがって、ステープラ(または特にステープルカートリッジ)は最早(ステープルカートリッジを交換するまで)使用されない。

[0088]

ステープル射出が実行される前に、ステープル範囲制限スイッチでステープルカートリッジ 5 0 とアンビル 6 0 の相対位置が確認される。ステープル範囲制限スイッチが作動したら、それはアンビル 6 0 が良好なステープル射出範囲にあることを意味し、ステープル射出モータ 2 1 0 が作動して射出サイクルが進められる。ステープル範囲制限スイッチが作動しない場合、射出サイクルは打ち切られ、アンビル 6 0 はホームポジションに戻り、ステープル射出スイッチ 2 2 はアクティブのままで再発射可能となる。

[0089]

モータの駆動(または、作動、駆動、制御、動作として参照される)および/または、 エンドエフェクタ(例えばアンビルまたはステープラ/カッター)の様々な部分のドライ ブトレインを説明する。このような駆動は利用者による作動ボタンの単一押下や、電源に よるモータの単一励起に限るモータ駆動に限る必要はない。装置内の様々なモータの制御 は、利用者が作動ボタンを何回も押す必要があり、例えば、1回目はエンドエフェクタの 一部の最初の3つの動作を作動させ、2回目は次の3つの動作、3回目は最後の3回の動 作用である。手術用ステープラの具体例では、第1の作動例でステープルスレッドまたは ブレードがロックアウト解除され、第2の作動例で部品が組織の上に移動し、第3の作動 例でスレッドがすべてのステープルを超えてステープルカートリッジの端部まで移動する 。同様に、モータ駆動は一定である必要はなく、例えば、ブレードがその動作点の端部に 到達するまでの移動を開始する時間から一定に駆動される。代わりに、モータはパルスモ ードで駆動されてもよく、第1の例はエンドエフェクタ機能の作動時に電源からモータに 供給される電力の間欠オンオフスイッチングを含む。より具体的にステープラでは、ステ ープル/カッターがその近位/スタート位置から最も遠位の位置に移動するまで、モータ は10回/秒間パルス制御される。このパルス制御は、マイクロプロセッサにより直接制 御または制御され、これらのいずれもパルスレートは調整可能である。代替的に、あるい は付加的に、モータはパルス変調駆動され(パルス幅またはパルス周期)、ここではパル スが非常に短い期間で生じる(例えば、一秒に数十、数百、数千、あるいは数百万)。し たがって、本書に記載の電源、モータ、および/またはドライブトレインが駆動されると 、これらの、および他の可能な動作モードが想定され包含される。

[0090]

ステープル射出が完了したら、アンビル60は閉じ位置に維持され、伸長スイッチ20のみがアクティブのままとなる(他のスイッチはすべて非アクティブ)。アンビル60が少なくともホームポジションまで伸びたら、伸長スイッチ20と収縮スイッチ21の双方がアクティブにされるが、収縮スイッチ21はアンビル60がホームポジションを越えて閉じるのを防止する。ステープル射出スイッチ22は、ステープル射出が完了したら非アクティブに維持される。

[0091]

上述したように、アンビルネック30は、トロカール410に連結された線形フォーススイッチ400を収容する。このスイッチ400は、所定の引っ張り負荷がかけられると応答(calibrate)する。この所定の負荷は、ステープルが行われる前に特定の組織にかけられる所望の圧力に対応するよう設定される。このスイッチ400とプロセッサのインタフェースは、確実にOTC範囲内でのみステープル射出が行われるようにする。

[0092]

以下のテキストは、上述した本発明にかかる方法を実現するプログラムリストの一実施例である。以下のテキストは例示であり、当業者であれば本発明にかかる方法のプログラミングが、多くの異なる形式で同じ機能を実現しうることを理解するであろう。

[0093]

rev3cボード(cb280チップセット) V8.03(CS-3c-080306 . CUL) を用いた円形ステープラ用プログラム

'8-3-06

'Modified program to abort with only fire button, added pbcount variable

'Added PWM ramping

7-28-06

'final tweaks - stan is now an integer etc.

'7-17-06 This version written for the 3c board.

'7-14 DEBUGGING VERSION

'Program written for 3c board using the Cubloc 280 chipset

'Note: this program is a modified version of the ones noted below. All changes n ot related to the addition of the E/R limit switches

'apply. The programs below were written to deal with the "gray logic" of the 1 c m switch. This version uses

'a limit switch at either end of the extend/retract stage.

'V6.20 Final Version of Gray Logic program as used in prototype 0, serial number 100

'V6.05

'modified the extend to cm 1 and retract to cm 1 routines to make sure that when they are called that they move the motor until the cm

'switch is closed; ie: When the anvil is all the way out and the retract button is pressed, retract the anvil until the cm limit switch

'is closed regardless of whether the retract button is released before the cm sw itch is closed. Same change for when the anvil is

'extended from the 1 cm position.

'made changes to comments in the extend/retract routines

'V6.02

'added loop requiring the release of both buttons to exit jog routine, and a 1 s econd delay at the end of jog subroutine before

'going back to main routine

'reformatted datadump labels

'added variables for high and low speed pwm values

'added extend only capability at end of completed fire to prevent crushing stapl ed tissue

'NOT WORKING- REMOVED added checks To ensure 1 cm switch Is made when extending Or retracting from the 1 cm And fully extended positions respectively

'All prior versions were made for testing the program on the Cubloc development board. All outputs were pulled LOW. The actual device

10

20

30

40

```
'requires all the outputs to be pulled high (+5V). This version is set-up to run
 on the actual device.
'limited the values of the EEPROM data to 255 max
'added delays before changes in motor direction, made program run smoother
'removed pwmoff commands. They were not allowing the motors to stay on when chan
ging subroutines (for some reason)
'added the recording of jog routine button presses
'added the recording of datadump requests
                                                                                      10
'added the recording of Extend/Retract button presses
'added serial number field in eeprom
'the datadump routine now keeps running total of data as it is read from eeprom
'V5.25 (circular-sta ler-5-25.cul)
'added code to allow storage of data each power on cycle in eeprom
'V5.24 works well, no known bugs (circular-stapler-5-24.cul)
'KMS Medical LLC (c) 2006
'MAP
                                                                                      20
'P10 Extend Button
'P11 Retract Button
'P12 Fire Button
'P13 Extend Limit
'P14 Retract Limit
'P15 Fire Forward Limit
'PI6 Fire Back Limit
'P17 1 cm Limit Switch
'P18 Staple Range Limit Switch
                                                                                      30
'P19 Force Switch
'P20 Extend Button LED
'P21 Retract Button LED
'P22 Fire Button LED
'P23 Force LED (blue)
'P24 Not USED
'P25 Not USED
'P26 Not USED
'P27 Not USED
'P28 Not USED
                                                                                      40
'P29 Staple Range LED (green)
Const Device=cb280 'Comfile Tech. Cubloc CB280 chipset
Dim ver As String*7
ver="3C-8.03" 'set software version here
Dim extendbutton As Byte
Dim retractbutton As Byte
Dim firebutton As Byte
Dim firstout As Byte
Dim firstback As Byte
```

Dim cmstatus As Byte

```
'Icm limit switch status
Dim srstatus As Byte 'staplerange limit switch status
Dim x As Integer
Dim powerons As Byte 'store in eeprom address 2
Dim cycnumfires As Byte 'store in eeprom (powerons* 5)
Dim cycabortfires As Byte 'store in eeprom (powerons*5)+1
Dim cycers As Byte 'store in eeprom, number of cycle extend/retract presses
Dim cycjogs As Byte
Dim arm As Byte
                                                                                     10
Dim completefire As Byte
Dim staplerangestatus As Byte
Dim bail As Byte
Dim ds As Integer 'eeprom data start location for individual cycle data writing
Dim fast As Integer
Dim slow As Integer
Dim extendonly As Byte
Dim extlimit As Byte
Dim retlimit As Byte
Dim speed As Integer
                                                                                     20
Dim dracula As Byte
'initalize outputs
Out 20,0 'extend button LED
Out 21,0 'retract button led
Out 22,0 'fire button led
Out 23,0 'force led
Out 29,0 'staple range led
                                                                                     30
'initialize variables
firstout=0
firstback=0
completefire=0
arm=0
bail=0
cycnumfires=0
cycabortfires=0
cycers=0
cycjogs=0
                                                                                     40
extendonly=0
'CHANGE PWM VALUES HERE
fast=60000 'highspeed pwm value
slow=60000 'lowspeed pwm value
speed=0
Output 5 'turns on pwm output for PINCH
Output 6 'turns on pwm output for FIRE
```

```
powerons=Eeread(2, 1 )
```

Incr powerons 'increment total power on number

If powerons>=255 Then powerons=255 limit number of recorded powerons to an integ er of one byte max

Eewrite 2,powerons, I 'write total power on number to eeprom ds=powerons*5

'JOG and DATADUMP Check

'push any button within 2 (or so) seconds to go to jog routine

'hold all three buttons on at startup to dump the data

For x=1 To 50

If Keyin(10,20)=0 And Keyin(11,20)=0 And Keyin(12,20)=0 Then

datadump 'write all stored data to the debug screen

Exit For

Elseif Keyin(10,20)=0 Or Keyin(11,20)=0 Or Keyin(12,20)=0 Then 'either e/r button or the fire button pressed

jog

Exit For

End If

Delay 20

Next

'ホーミングシーケンス

cmstatus=Keyin(17,20) 'read the status of the Icm limit switch

If cmstatus=0 Then

homeretract

Elseif cmstatus=1 Then

homeextend

End If

'Return fire motor to back position

homefire 'this returns the fire motor to the full retracted condition (P6 limit switch)

* * * * * * * * *

'メインループ

40

10

20

30

Dο

'Debug "Main Loop", Cr

'Delay 1000

cmstatus=Keyin(17,20) 'read the 1 cm switch

'staplerangestatus=Keyin(5,20) 'read the staplerange limit switch

extendbutton=Keyin(10,20)

retractbutton=Keyin(11,20)

firebutton=Keyin(12,20)

```
If cmstatus=0 And Keyin(13,20)<>0 Then
Out 20,1 'turn extend led on
Out 21,1 'turn retract led on
Elseif cmstatus=0 And Keyin(13,20)=0 Then
Out 20,0 'turn off extend led because extend limit met
Out 21,1 'turn on retract limit
Elseif cmstatus=1 Then
Out 20,1
                                                                                   10
Out 21,0
End If
'check firebutton led status
If firstout=1 And firstback=1 And arm=1 And completefire<>1 And cmstatus<>0 Then
Out 22,1 'turn on fire button led
Else
Out 22,0 'turn off fire led
End If
                                                                                    20
'check for extend retract button press
If extendbutton=0 And cmstatus=0 Then
extend
Elseif cmstatus=1 And extendbutton=0 Then
extend
End If
If retractbutton=0 And cmstatus=0 Then 'And extendonly=0
retract
End If
                                                                                   30
'check for firebutton press
If firebutton=0 And firstout=1 And firstback=1 And arm=1 And completefire<>1 And
 cmstatus<>0 Then initialfire
Loop 'keep looping til powerdown
End 'End of program
サブルーチン
******
                                                                                    40
'ホーム: c m スイッチまで引き戻す = 押下なし
Sub homeretract() 'retract until 1 cm switch is open
'Debug "Homeretract", Cr
'Delay 1000
Pwm 0, slow, 60000
Do Until Keyin(17,20)=1 'retract until 1 cm switch is open
Out 31,1 'ER motor reverse
```

Loop

```
Out 31,0 'er motor off
Out 21 ,0 'turn retract led Off
Out 20,1 'turn extend led On
Pwmoff 0 'turn pwm off
End Sub
'ホーム: c m スイッチまで伸長 = 押下あり
Sub homeextend() 'extend until 1 cm switch is closed
                                                                                   10
'Debug ' omextend", Cr
'Delay 1000
Pwm 0, slow, 60000
If Keyin(17,20)=I Then
Do Until Keyin(17,20)=0 'now the 1 cm switch is pressed
Out 30, I 'ER motor forward DDD
Loop
End If
Out 30,0 'DDD
                                                                                   20
Pwmoff O
Delay 300
homeretract 'once the switch is made, call homeretract
End Sub
'射出モータホーミングルーチン
Sub homefire()
'Debug "Homefire", Cr
'Delay 1000
                                                                                   30
Pwm I, slow, 60000
Do Until Keyin(16,20)=0 'retract firing stage until back switch is closed
Out 33,1
Loop
Out 33,0
Pwmoff 1
End Sub
'JOG ルーチン
                                                                                   40
Sub jog()
Out 20,1
Out 21,1
Do
Delay 25
If Keyin(10,20)=0 And Keyin(11,20)=0 Then Exit Do 'if both buttons pressed, exit
jog routine and start homing routine after 1 second delay
If Keyin(10,20)=0 And Keyin(11,20)<>0 And Keyin(12,20)<>0 Then
```

Pwm 0,slow,60000

```
Out 30,1 'extend motor forward
Do Until Keyin(10,20) <> 0 Or Keyin(13,20) = 0
Out 30,1 'extend motor on forward DDD
Loop
Out 30,0 'extend motor off forward DDD
Pwmoff 0
Incr cycjogs
If cycjogs>=255 Then cycjogs=255
Eewrite ds+3, cycjogs, I
                                                                                       10
End If
If Keyin(11,20)=0 And Keyin(10,20) <> 0 And Keyin(12,20) <> 0 Then
Pwm 0, slow, 60000
Do Until Keyin(11,20)<>0 Or Keyin(14,20)=0
Out 31,1 'extend motor reverse
Out 31,0 'extend motor off reverse
Pwmoff0
Incr cycjogs
                                                                                       20
If cycjogs=255 Then cycjogs=255
Eewrite ds+3, cycjogs, I
End If
If Keyin(12,20)=0 And Keyin(10,20)=0 Then 'jog the fire motor forward
Pwm I, slow, 60000
Do Until Keyin(10,20) <> 0 Or Keyin(12,20) <> 0 Or Keyin(15,20) = 0
Out 32,1 'fire motor forward
Loop
Out 32,0 'fire motor off forward
                                                                                       30
Pwmoff 1
Incr cycjogs
If cycjogs>=255 Then cycjogs=255
Eewrite ds+3,cycjogs, I
End If
If Keyin(12,20)=0 And Keyin(11,20)=0 Then 'jog the fire motor reverse
Pwm I, slow, 60000
Do Until Keyin(11,20)<>0 Or Keyin(12,20)<>0 Or Keyin(16,20)=0
Out 33,1 'fire motor reverse
                                                                                       40
Loop
Out 33,0 'fire motor off reverse
Pwmoff 1
Incr cycjogs
If cycjogs>=255 Then cycjogs=255
Eewrite ds+3,cycjogs, I
End If
Loop
```

Do Until Keyin(10,20)=I And Keyin(11,20)=I 'let off both buttons before exiting

```
jog routine
Delay 10
Loop
Out 20,0 'turn on e/r button leds
Out 21,0
Delay 1000
End Sub
'伸長制限を満たすまで伸長する
                                                                                    10
Sub extend()
Out 22,0 'turn off fire button led while extending
Out 21,0 'turn off retract button led while extending
Pwm 0, fast, 60000
Do Until Keyin(10,20)=1 Or Keyin(13,20)=0 'extend until either the extend limit
is closed or the extend button is released
Out 30,1 'ER motor forward DDD
Loop
                                                                                    20
Out 30,0 'DDD
If firstout=0 Then 'this will keep the extend motor going on the first extension
 until the anvil is all the way out
Do Until Keyin(13,20)=0
Out 30, I 'DDD
Loop
End If
Out 30,0 'DDD
Pwmoff 0
                                                                                    30
Incr cycers
If cycers>=255 Then cycers=255
Eewrite ds+2, cycers, 1
If Keyin(13,20)=0 Then
firstout=1 'set the firstout flag to enable fire button
Out 20,0 'turn off extend led
End If
End Sub
' c m スイッチが開になるまで収縮
                                                                                    40
Sub retract()
Out 22,0 'turn off fire button led while retracting
Out 20,0 'turn off extend button led while retracting
Pwm 0, fast, 60000
Do Until Keyin(11,20)=1 Or Keyin(17,20)=1 'retract until either the lcm switch g
oes open or the extend button is released
Out 31,1 'ER motor reverse
Loop
```

Out 31,0

```
Pwmoff 0
Incr cycers
If cycers>=255 Then cycers=255
Eewrite ds+2, cycers, 1
If Keyin(17,20)=I Then
firstback=1
Out 21,0 'turn retract led off
End If
If firstout=1 And firstback=1 Then arm=1 'set the arm flag to arm the fire butto
                                                                                   10
End Sub
'DATADUMP ルーチン
Sub datadump()
Dim chef As Byte
Dim tf As Byte 'total fires
Dim ta As Byte 'total aborts
Dim ers As Integer
                                                                                   20
Dim tj As Byte
Dim tdd As Byte
Dim stan As Integer
Dim kyle As Byte
Dim token As Byte
Dim ike As Byte
Dim kenny As Byte
Dim sn As Byte
t f=0
                                                                                   30
ta=0
ers=0
t j = 0
tdd=0
Eewrite ds+4,1,1 'write 1 to the ds+4 eeprom register denoting that datadump was
 accessed
Delay 1000
sn=Eeread(0,1)
Debug "Circular Stapler Stored Data", Cr
                                                                                   40
Debug "Version ", ver, Cr
Debug "KMS Medical LLC", Cr
Debug "-----", Cr
Debug Cr
Debug "Serial Number: ", Dec sn, Cr
powerons=Eeread(2,1)
If powerons=255 Then powerons=255
Debug "Total Cycles: ", Dec powerons, Cr
Debug Cr
Debug "-----", Cr
                                                                                   50
Debug Cr
```

```
For stan=5 To (powerons*5) Step 5
Debug "Cycle ", Dec (stan/5), Cr
Debug "-----", Cr
chef=Eeread(stan, 1)
tf=chef+tf
Debug "Completed Fires: ", Dec chef, Cr
kyle=Eeread(stan+ 1,1)
ta=kyle+ta
Debug "Aborted Fires: ", Dec kyle, Cr
                                                                                  10
token=Eeread(stan+2, 1)
ers=token+ers
Debug "E/Rs: ", Dec token, Cr
ike=Eeread(stan+3 , 1)
tj=ike+tj
Debug "Jogs: ", Dec ike, Cr
kenny=Eeread(stan+4, 1)
tdd=kenny+tdd
Debug "Datadumps: ", Dec kenny, Cr
Debug Cr
                                                                                   20
Next 'stan
Debug "-----", Cr
Debug "Cycle Totals", Cr
Debug Cr
Debug "Completed Fires: ", Dec tf, Cr
Debug "Aborted Fires: ", Dec ta, Cr
Debug "E/R Presses: ", Dec ers, Cr
Debug "Jog Presses: ", Dec tj, Cr
Debug "Datadumps: ", Dec tdd, Cr
                                                                                  30
Debug Cr
Delay 1000
For x=1 To tf'blink the number of completed firing cycles
Out 22,1
Delay 500
Out 22,0
Delay 500
Next 'x
Do Until Adin(0)>800 And Keyin(3,20)=1 'wait until datadump buttons are released
                                                                                   40
Loop
End Sub
'最初の射出
Sub initialfire()
Dim f As Integer
Dim p As Integer
Dim t As Integer
Dim y As Integer
                                                                                  50
Dim z As Integer
```

Dim q As Integer

```
Dim timmy As Integer
Dim butter As Integer
Dim numblinks As Integer
Dim fbcount As Integer
Debug clr,Cr
'turn off extend and retract buttons to show that they are not active for abort?
                                                                                      10
Out 20,0 'extend button
Out 21,0 'retract button
bail=0
t=15 'total blink time
p=3 'number of blink periods
Pwm 0, fast, 60000
'start blink and adjust pinch motor to force
f = (t * 1000) / p
fbcount=0
                                                                                      20
If Keyin(12,20)=| Then fbcount=|
For y=1 To p
numblinks= (t*y)/p
For z=1 To numblinks
timmy=f/numblinks
butter=timmy/50 'calibrate this to seconds
                                                                                      30
If timmy=0 Then timmy=1
If Keyin(12,20)=0 And fbcount=1 Then
bail=I 'set abortfire flag
Exit For
End If
If Keyin(12,20)=I Then fbcount=I
Do Until Keyin(19,20)=0 Or Keyin(14,20)=0 'retract until force switch met or ret
ract limit met
Out 31,1
If Keyin(12,20)=0 And fbcount= 1 Then
                                                                                      40
bail=I 'set abortfire flag
Exit Do
End If
If Keyin(12,20)=| Then fbcount=|
Loop
If bail=1 Then Exit For
Out 31,0
Out 23,1 'force led
Out 22,1 'fire button led
For q=0 To butter
                                                                                      50
Delay 10
```

```
If Keyin(12,20)=0 And fbcount=1 Then
bail=I 'set abortfire flag
Exit For
End If
If Keyin(12,20)=I Then fbcount=I
If Keyin(19,20)=I Then Out 23,0
Next 'q
If bail=I Then Exit For
Do Until Keyin(19,20)=0 Or Keyin(14,20)=0 'retract until force switch met or ret
                                                                                      10
ract limit met
Out 31,1
If Keyin(12,20)=0 And fbcount=1 Then
bail=I 'set abortfire flag
Exit Do
End If
IfKeyin(12,20)=I Then fbcount=I
Loop
Out 31,0
Out 23,1
                                                                                      20
If Keyin(12,20)=0 And fbcount=1 Then
bail=1 'set abortfire flag
Exit For
End If
If Keyin(12,20) = 1 Then fbcount = 1
Out 22,0
For q=0 To butter
Delay 10
                                                                                      30
If Keyin(12,20)=0 And fbcount=1 Then
bail=I 'set abortfire flag
Exit For
End If
If Keyin(12,20)=I Then fbcount=I
If Keyin(19,20)=1 Then Out 23,0
Next 'q
If bail=I Then Exit For
Next 'z
                                                                                      40
'Debug Dec? fbcount,Cr
If bail=I Then Exit For
Next 'y
Pwmoff 0
If bail=I Then
abortfire
Else
'staplerangecheck
finalfire
                                                                                      50
End If
```

End Sub

Delay 50

'ステープル範囲確認ルーチン

```
Sub staplerangecheck()
srstatus=Keyin(29,20) 'read the staplerange limit switch
If srstatus=0 Then
finalfire
Else
                                                                                      10
abortfire
End If
End Sub
' 最終射出ルーチン
Sub finalfire()
Out 23,0 'turn force led off
Out 20,0 'turn extend led off
Out 21,0 'turn retract led off
                                                                                      20
Out 22,1 'Turn on fire led to signify final fire abort ready
Pwmoff 1
'Pwm I, fast, 60000
'Out 32,1 'fire motor forward DDD
completefire=1
Do Until Keyin(15,20)=0 'fire forward until forward limit is met
If speed>=60000 Then speed=60000
If speed<60000 Then
speed=speed+10000
End If
                                                                                      30
Pwm I, speed, 60000
Out 32,1
Delay 50
If Keyin(12,20)=0 Then 'Or Keyin(10,20)=0 Or Keyin(11,20)=0
bail=I
Exit Do
End If
Loop
Out 32,0 'fire motor fwd off DDD
                                                                                      40
speed=0
Delay 250
Do Until Keyin(16,20)=0 'retract fire motor
If speed>=60000 Then speed=60000
If speed<60000 Then
speed=speed+10000
End If
Pwm I, speed, 60000
Out 33,1
```

20

30

40

50

Loop

speed=0

Out 33,0

Pwmoff I

Out 22,0 'turn fire led off

Out 21,0 'turn off retract led

extendonly=1

Incr cycnumfires

If cycnumfires>=255 Then cycnumfires=255

Eewrite ds, cycnumfires, I 'write the current cycle number of fires to the eeprom Delay 200

End Sub 'return to the main routine

'射出打ち切り

Sub abortfire()

'Debug "Fire aborted before firing!!",Cr

Out 31 ,0 'turn retract motor off

Out 32,0 'turn fire forward off DDD

Out 23,0 'turn force led off

Pwm I, fast, 60000

Delay 250

Do Until Keyin(16,20)=0 'retract fire motor

Out 33,1

Loop

Out 33,0

Pwmoff 1

Out 22,0 'turn fire led off

Incr cycabortfires

If cycabortfires>=255 Then cycabortfires=255

Eewrite ds+1, cycabortfires, 1 'write the current cycle abortfires to the eeprom Delay 200

homeextend 'extend to Icm

End Sub

[0094]

上記には、エンドエフェクタの着脱可能および / または交換可能な部分を具える同定装置を用いる可能性も開示されている。このような識別装置は、例えば、追跡用法または (track usage and inventory) として用いることができる。

[0095]

識別装置の一例は、無線周波数を用い、RFIDとして呼ばれるものである。医療用ステープラが、本書に開示するような再装填可能で交換可能なステープルカートリッジを用いる場合、RFIDをステープルカートリッジに装填して、特定のステープラと、ハンドルに付属しうる可換ステープルカートリッジを検知するRFIDをステープルカートリッジを検知するRFIDをステープルカートリッジに装填されたRFIDをステープルカートリッジに呼びかけ信号を送る。RFIDはステープラを照合するユニークなコードで応答する。ステープラカートリッジが照合通りのラベルである場合、ステープラはアクティブとなり、使用可能となる。しかしながらカートリッジが拒否された場合、ステープラは拒否表示を出す(例えば、LED点滅、可聴音、視覚表示)。近くのカートリッジの偶発的または不正確な読み込みを避けるために、RFIDリーダのアンテナは、ステープルカートリッジがステープラに搭載されるか非常に近

20

30

40

50

い場合のRFIDのみを読み込む(最適には、装置の遠位端部で)。RFIDの使用は、機械的ロックアウトと組み合わせて、確実にステープルカートリッジごとに1の射出サイクルのみが行われるようにする。RFIDは、リーダが高価で、アンテナを比較的大きくする必要があり、読み取り距離が比較的狭く、通常は数センチメートルという不都合がある。

[0096]

他のワイヤレス認証を用いてもよい。アクティブRFIDを用いてもよい。同様に、赤外線(IR)通信装置を用いてもよい。しかしながら、これらはいずれも受信端で電力を 生成する必要があり、これがコストとサイズの不利益となる。

[0097]

他の認証装置の例は、暗号化である。暗号化により数字の処理が必要となり、これらの計算に伴って処理チップ(例えばマイクロプロセッサ)が使用され、これらのいずれかはステープルカートリッジや可換型エンドエフェクタシャフトなどの可換部品の上に配置される。このような暗号化チップは、本発明の手術器具の最適化を分析する特定の特性を有する。第1に、可換部品用の別の電源は必要ない。このような電源を追加するコストのみならず、望まない重量までが追加され、他の部品または必要のない空間が占められる。このように、部品用の電源は、ハンドル内の既存の電源からとられるべきである。また、電源供給は常時保証されるべきである。可換部品は比較的小さく、これに対応して暗号化・ップも小さい。さらに、ハンドルや可換部品の双方が使い捨て可能に構成されると、それ故、双方の暗号化プロセッサに使い捨てとするコストがかかる。最後に、可換部品の暗号化装置と、対応するハンドルの暗号化装置は小型化されるべきである。後述するように、本発明にかかる暗号化装置は、これらの望ましい特性のすべてを提供し望まない特性を制限するものである。

[0098]

暗号化認証装置は、商業的に入手可能である。このような暗号化装置の一つは、Dallas Semiconductorで製造され、DS2432チップとして参照される。このDS2432チップは、リーダとトランスポンダ間の暗号化認証を行うのみならず、装置特性情報を保存するのに用いるメモリを具え、これらの情報および使用については後に詳述する。DS2432の有利な特性は、1ワイヤ装置であることである。これは、電力と入力および出力信号の双方が同じ配線で送られることを意味する。このDS2432のような1ワイヤ装置では、ハンドルとエンドエフェクタ間を接続するのに、ハンドル本体10からアンビルネック30を通って可換ステープルカートリッジ50へ単一の配線が延びるだけでよい。この構成は、電機接続を最小限の量とする特性を満たし、これに対応して製造コストが低減する。DS2432チップはアースする必要があるが、金属のアンビルネック30が導電性であり、装置1のアースに接続されており、このためDS2432チップのアース接続の一実施例は、リードからネック30への直接接続により達成することができる。

[0099]

暗号化回路の一実施例は、第1の暗号化チップを可換部品(例えばステープルカートリッジ)に設けている。第1の暗号化チップのアースは可換部品の金属部分へと電気的に接続されている。DS2432チップの1ワイヤ接続は、可換部品のどこかであるがアースから電気的に遮断された部分に電気的に接続される。例えば、可換部品が60mm線形ステープルカートリッジがある場合、DS2432は最後のステープルセットの遠位部と電気的に絶縁されたカートリッジの遠位端部に取り付けられるか埋め込まれる。この暗号化チップは、カートリッジのステープルが出るのと反対側に埋め込まれ、使用時に作業面にも曝された組織にも面しない。DS2432チップのアース線は、ステープルカートリッジの金属外側フレームに電気的に接続され、これがステープラのアースに電気的に接続されている。1ワイヤのリードは第1の導電装置(例えばパッド、リード、または双方)に電気的に接続され、これはカートリッジの金属フレームから電気的に絶縁されている。単一の導電性であるが絶縁された配線が、近位端部から回路ボードまたは装置のハンドル内の適切な制御電子部品に

20

30

40

50

接続されている。この配線は、ステープラの他の部分、特にアースフレームとの電気接触から遮断されており、ハンドルからネックを通り可換部品の受けチャンバまで延びている。遠位端部において、絶縁配線は第2の導電装置(例えばパッド、リード、または双方)に曝されて電気的に接続され、これはカートリッジがエンドエフェクタ内で定位置にロックされたときに第1の導電装置と積極的に接触する形状である。このような構成により、2つの導電装置は可換部品(例えばステープルカートリッジ)がエンドエフェクタに挿入される度に直接的な電気接続を形成し、ある特定の実施例では、部品が正しく挿入された場合のみ接触が実現する。

[0100]

DS2432はまた、面積が数mm四方であり、ステープルカートリッジといった小型 の可換部品にチップを容易に取り付け可能とすると同時に、例えば小型化要求にも応えて いる。DS2432チップは、比較的安価であることに留意されたい。DS2432チッ プによるすべての通信を外部検査から隠れた状態に維持するには、DS2460(これも またDallas Semiconductor が製造)を、DS2432から受信する暗号送信を内部で計 算した期待される答えと比較するのに用いることができる。これら両方のチップの特性が 、Dallas Semiconductors社のアプリケーションノート3675に開示されており、これ は本書に全体として参照により組み込まれている。DS2460チップは、DS2432 チップより実質的に割高であるが、ハンドルとともに使い捨てとしうる程度に廉価である 。医療器具(例えば本発明の手術器具)の使い捨ての可換部品の数は、通常、この可換部 品を受けるハンドルの数を相当上回る。したがって、DS2432チップが交換可能な部 品に設けられ、DS2460チップをハンドルに設けると、低コストでの暗号化特性が満 足される。アプリケーションノート3675の図2に説明される2つのDS2432チッ プを用いた代替的な回路構成も存在し、ここで回路はローカルのマイクロプロセッサ(例 えばマイクロプロセッサ2000)で比較を実行することにより、高価なDS2460チ ップを不要としている。このような構成では、装置1に暗号化を付加するコストが低減す るが、説明したように、この構成は比較される双方の数字を検査できるようにすることに よってセキュリティ面を捨象する。

[0101]

暗号化を用いる医療器具の可換部品の電子認証プロセスを、DS2432チップを1つとDS2460チップを1つ有する実施例で説明する。この暗号化装置の制御回路の例が、図30に示されている。この実施例は、マイクロプロセッサ2000を有する回路ボードが組み込まれたハンドルを具える線形ステープラを用いる。マイクロプロセッサ2000の1の自由なI/Oピン2010がDS2460の第1のリード2110に接続され、別のI/Oピン2020が第2のリード2120に接続されている。各可換部品2200には、DS2432チップが設けられ、1ワイヤリードがマイクロプロセッサ2000の第3のI/Oピン2030に接続されている。

[0102]

処理を開始するには、可換部品 2 2 0 0 を装置に接続し、アースと 1 ワイヤリードに電気的に接続する。マイクロプロセッサ 2 0 0 0 が、装置 1 に新しい部品 2 2 0 0 が接続されたことを検知したら、認証ルーチンを実行する。最初に、マイクロプロセッサ 2 0 0 0 は、第 1 の通信ピン 2 0 1 0 でランダム番号要求を D S 2 4 6 0 に出す。 D S 2 4 6 0 は予めプログラムされたシークレット番号を有し、これは可換部品 2 2 0 0 に含まれる各 D S 2 4 3 2 チップに登録されたシークレット番号と同じである。したがって、D S 2 4 3 2 と D S 2 4 6 0 チップの双方に設けられたランダム番号が同じであれば、 2 つのチップからそれぞれ出力される結果は同一となる。 D S 2 4 6 0 はランダム番号を作成し、第 2 のピン 2 0 2 0を介してマイクロプロセッサ 2 0 0 0 に送り、これがピン 2 0 3 0を介して1 ワイヤリードを超えて D S 2 4 3 2 に送られる。 D S 2 4 3 2 がこのランダム番号を受信したら、自身の S H A - 1 アルゴリズム(全国化学技術情報システム(N I S T)が開発)にかけて、暗号のハシュコード応答を生成する。このハシュコード応答は、1 ワイヤリードを超えてマイクロプロセッサ 2 0 0 0 に返送され、ピン 2 0 1 0 または 2 0 2 0

20

30

40

50

のいずれかを介してDS2460に送られる。この期間中、DS2460はまた、自身で ハシュコード応答を算出する。最初に、DS2460は、内部的にDS2432に送った のと同じランダム番号を自身のSHA-1アルゴリズムにかけて、内部的に、生成したハ シュコード応答を保存する。このDS2460はまた、DS2432からマイクロプロセ ッサ2000を通じて送信されたハシュコード応答を保存する。双方のハシュコード応答 が照合され、これらが同一である場合、可換部品2200は確認され承認される。これら のハシュコード応答が相違する場合、部品2200は拒否され、装置は部品2200が使 えない状態か、特定の防衛手段が施されてからのみ使用可能とする状態となる。例えば、 時間、日付、環境等に関するデータや、未承認の部品の特性を保存して、後に製造者(ま たは販売店)へ一斉送信して、ユーザが装置に未承認の部品2200を使用しようとして いるか既に使用したことを製造者に通知するようにしてもよい。メッセージが暗号化され ない場合、認証メッセージは傍受され偽造され、盗まれ、または部品2200を認可され た業者から購入せずに未承認の部品2200が使用されてしまう。本書における一実施例 では、ラインを横切って送信される情報で試験しうる唯一のものは、単一のランダム番号 と単一のハシュコード応答である。このSHA-1で生成した応答を解読するには数百年 かかると言われており、これによりリバースエンジニアリングの動機が低減される。

[0103]

本例で使用するチップはいずれも、認証が成立した場合にアクセス可能となる安全なメモリを有し、それぞれがメモリ内に保存される複数のシークレットキーを持つようプログラムされてもよい。例えば、DS2460は内部に複数のキーが保存されており、部品2200はそれぞれこれらに保存されセットの複数のキーから選択される唯一のキーを有する場合、DS2460は、部品2200の「通常の」単一のキーに対する「マスター」キーとして作用する。

[0104]

本発明の手術器具の可換部品を認証すると、多くの肯定的な効果を得ることができる。 第1に、装備の製造者はユーザが未承認部品を使用するのを防止することができ、これに より承認された部品のみを確実に使用させることができる。これは製造者が可換部品の売 上げからロイヤリティを受け取れることを保証するばかりでなく、製造者は手術器具の高 度な品質を保証することができる。暗号化回路を具えるメモリを有することにより、本発 明による利益が飛躍的に増大する。例えば、線形ステープラの1のエンドエフェクタが3 0mm、60mm、120mmのステープルカートリッジを収容する場合、例えば、カー トリッジの各サイズに個別のキーが付与されるとともに、ハンドルはこれらの3つのキー をそれぞれ保存し利用するようプログラムすることができる。他の2つとは異なるいずれ か1に対応する内部演算されたハシュコード応答を受信すると、ハンドルはどの種類のカ ートリッジが装置に挿入されたかを判別することができる。各カートリッジはメモリ内に 、例えば多様なカートリッジサイズによって異なるステープルスレッド動作長などカート リッジ特有のパラメータを有してもよく、これにより検出されるカートリッジによってハ ンドルが異なる動作をしてもよい。確認されたパラメータは、特定の部品の改訂レベルを 示してもよい。例えば、第1版のカートリッジはいくつかの使用パラメータを有し、この カートリッジを検出した場合に、ハンドルが第1版のカートリッジを使用せずに第2版の カートリッジを使用するようにしたり、その逆としたりすることができる。

[0 1 0 5]

暗号化チップにメモリを具えると、このカートリッジは他の種類のデータを追跡できるようになる。例えば、カートリッジは過去に連結された各ハンドルの識別子、カートリッジから射出したハンドルの識別子、時間、日付、他の使用および/または接続されたときの時間データ、カートリッジを射出するまでにかかった時間、ステープル射出に射出トリガが何回作動したか、および他の類似のパラメータを保存してもよい。具体的には1のパラメータはカートリッジが誤動作したときのデータを記録してもよい。これにより製造者は、カートリッジの誤作動またはユーザエラーが生じたときに、例えば、後に検証して利用者に改善策や他の訓練を施す助けとすることができる。ハンドルに利用可能なメモリを

20

30

40

50

設けると、他例えば各処置の長さ、各ステープル射出の速度、各射出で生成されるトルク、および / または各射出を通してかかる負荷などのハンドル関連パラメータを保存することができる。このメモリは、単にハンドルにあるリチウム電池で何年も駆動することができる。したがって、ハンドルのデータの長寿は保証されている。このメモリは、利用者によるこのハンドルの使用をすべて、対応する日付データとともに保存することがができる。例えば、ハンドルが一度の手術処置での利用のみ承認されているが、このハンドルが最終的にリサイクルのために製造者に戻されたとき、製造者はこの利用者(病院、医師と対しておそらくは危険な状態で使用したことを検出のことができる。暗号認証は、着脱式電池パックにも同様に利用できる。さらに、装置の様々な部分にセンサを設けて暗号化チップのメモリ内に格納される情報を送るようにしてもえば、温度センサがカートリッジが射出される際の手術室の温度を送信するようにしてもよい。この測定温度は、手術中の不適切な温度管理により後に感染症が生じた場合に用いることができる(例えば、空調が使えない国など)。

[0106]

ステープラが使用中に動作不良となるような好ましくない場合のために、機械的補助手動装置またはベイルアウトを設けて、手で患者から装置を取り外せるようにする。すべてのベイルアウトの使用は、これらの暗号化チップにあるメモリに記録することができる。さらに、なぜベイルアウトが必要となったのかを示すデータも保存して、後に確認できるようにする。品質維持のため、ベイルアウトが検出されたら、ハンドルは顧客/利用者にベイルアウトの使用を伝える証明書が送られるようプログラムしてもよい。

[0107]

上述の通り、本発明は上記実施例で用いたような円形ステープラに限らず、例えば線形ステープル装置などの様々な手術用のステープルヘッドに適用することができる。したがって、以下の多くの説明の実施例で線形ステープラが使用される。しかしながら、本書における線形ステープラの使用はそれに限定されると解釈されてはならない。

[0108]

上述した構成要素は、線形および円形ステープラのステープル制御軸80の周囲に存在するものであり、これらの要素はステープル制御アセンブリ200を構成する。上述したように、正しくステープルを出して組織を切開するのに必要な力は200ポンド以上であり、好ましくは250ポンド以下である。人体組織(例えば、結腸組織)の手術用線形ステープラで所望のステープルおよび切開機能を実現するのに最低限の要求は:

1)約3秒以内で約60mm(~2.4")のストロークに約54.5kg(120ポンド)をかける、

2) 約 8 秒以内で約 6 0 m m (~ 2 . 4 ") のストロークに約 8 2 k g (1 8 0 ポンド) をかけるものである。

本発明の電気駆動式ハンドヘルド型手術用線形ステープル装置は、後述するように新規な方法で最適化され、これらの要求を満たすことができる。

[0109]

上述した要求を満たすのに必要な力を生成すべく、機械的アセンブリの最大出力(ワット)は、これらの要求の最大リミットに基づいて計算される必要がある:82kg超60mmで3秒。これらの特徴の数学的変換は、ドライブトレインの出力に必要な最大約16ワットの動力を生成する。モータの効率は100%未満であり、ドライブトレインの効率もまた100%未満であるため、電力から動力への変換は1:1ではない。これら2つの効率の積が、全体の効率を構成する。16ワットの動力を生成するのに必要な電力は、全体効率の逆関数により16ワットより大きくなる。必要な電力が定まったら、最低限の電力要求を満たすかについて利用可能な電源が確認される。その後、尾となる電源の確認と最適化が行われる。この分析は後の記載で詳述する。

[0110]

電源とモータのマッチングと最適化は、双方の個々の特性に着目することを含む。電気

20

30

40

50

モータの特性を確認するとき、大きなモータは、小さなモータより高い効率で所定量の作業を実行する。希土類磁石またはコアなし構造のモータは、小さな寸法で同じ出力が出せるが、コスト高である。さらに、通常は、所定時間で同じ出力を出すよう設計された場合には大きなモータの方が小さなモータよりコストが低い。しかしながら大きなモータは、手術用ステープル装置に用いた場合には、配置されるハンドルのサイズが施術者の手のサイズに制限されるため、望ましくない特性となる。施術者は装置が小さく軽量であることを望み、大きく重いことを望まない。これらを考慮して、本発明の手術用ステープラハンドルに用いる場合のコスト、サイズ、重量が最適化される。

[0111]

施術者の手の中で用いるのに利用可能なモータは、比較的安価なセラミック磁石を用いるモータや、比較的高価な希土類磁石(例えばネオジム)を用いるモータを含む。しかしながら、後者の出力増加を前者と比較すると、後者のコスト増加に実質的に見合うほど十分に大きくない。したがって、ハンドル内に使用するにはセラミック磁石モータを選択できる。モータの実施例は例えば標準サイズ(直径)が27.5mmまたは24mmである。これらのモータの効率は約60%である(サイズと負荷により30%以下まで下がる)。これらのモータの速度は無負荷で約30,000rpmである(20,000乃至40,000гpm)。

[0112]

このような従来のモータを使用しても、さらにサイズを小さくすることが望まれる。このため、発明者は同様の出力だがサイズをかなり小さくしたコアレス、ブラシタイプ、DCモータを開発した。例えば、17mm直径のコアレスモータは、24mm直径のモータと殆ど同じ出力を出すことができる。通常のモータと異なり、このコアレスモータの効率は80%以上である。コアレスモータの殆どは、希土類磁石を用いる。

[0113]

このように制限された大きさと得られる動力では、効率の大きな機械的ギアトレインを 選択することが望まれる。最終的なドライブトレイン制御段階でラックアンドピニオンア センブリを配置すると、通常はラックアンドピニオンの効率が約95%であり、スクリュ ドライブの効率が約80%であるため、スクリュドライブと比較して最終段階で高効率と なる。線形電気ステープラの場合、ステープラが60mmカートリッジを有する場合には ステープル/切開機構には60mmの移動範囲がある(30乃至100mmの範囲のカー トリッジを用いることができるが、説明目的で60mmを用いた例とする)。この移動範 囲は、3秒で、全体を移動する場合のラックアンドピニオンの秒速は0.8インチである 。これを妥当なサイズのラックアンドピニオンアセンブリで実現しようとすると、ギアト レインはモータ出力を約60rpmに落とす必要がある。モータの出力速度が約30,0 00rpmであるとすると、ドライブトレインの速度低下は約500:1となる。このモ ータでこの低減を実現するには、5段階のドライブトレインを選択する。このようなドラ イブトレインの効率は各段階で約97%であることが知られている。したがって、約95 %の効率を組み合わせたラックアンドピニオンの全体効率は、(0.95)(0.97) ⁵ すなわち82%である。この82%にモータ効率60%を組み合わせると、ドライブト レインの効率は、電気的なものから機械的な効率全体で、約49.2%を生ずる。この全 体効率を知ると、所望の条件下でステープラに必要な電力量を算出すると、ステープル/ 切開する力を生成するのに算出した値の約2倍が必要となる。

[0114]

上述した要求を満たすのに必要な力を生成するには、機械アセンブリの出力(ワット)は、82kgで60mmを3秒が約16ワットに基づいて算出することができる。全体の機械効率は49.2%であることが分かるため、電源からは32.5ワットが必要となる(機械的16ワット~電気的32.5ワット。ワット×0.492全体効率)。この電力の最低要求で、ステープラを励起する電池の種類が特定され、これはこの場合で高出力リチウム一次電池を含む。高出力リチウム電池(例えばCR123やCR2電池)の公知の特性で、電池毎に5ピークワットを生成することがある。したがって、少なくとも6つの

電池を直列にすると、およそ32.5ワットの要求された電力を生成し、これが16ワットの動力に変換される。製造される各種の高出力リチウム電池が、ピーク出力供給において異なる特性を有しこれらの特性はかかる負荷により異なるため、最適化はここで終わりではない。

[0115]

第1の製造元の1の電池を第2の製造元の別の電池と区別する多様な特性の相違が存在する。比較しうる有意な電池特性は、1の電池から得られる出力を制限するものであり、これは以下のいくつかを含む:

- ・セル内の電解質の種類
- ・電解質の濃度および化学組成
- ・陽極と陰極がどうやって作られているか(化学的あるいは機械的構造の両方)
- ・PTC(抵抗の正温度係数)装置の種類と構造

これらの特性の1またはそれ以上を試験すると、ステープル装置への使用に最も望ましい電池を選択するのに価値ある情報を与えてくれる。最後の特性、すなわちPTC装置の動作の試験により、望む作業を行う電池種類の最適化が実現する。

[0116]

大多数の電源が、長時間にわたって、相対的に安定かつ効率的に動作することが求められている。電源を設計・構成する場合、通常は少ない回数の使用のために寿命の短い電源を選択することはない。しかしながら、電気ステープル装置の電源はほんの数回、短期間のみ使用される。使用の都度、モータはピーク負荷に耐えてエラーなく動作する必要がある。これはつまり、手術用ステープラでは、ステープル/切開機能は単一の医療処置で行われ、最大使用が10から20のサイクルカウントで、各回で可能な限りの装置のピーク負荷に対処するよう求められる。この1の処置の後、装置は使用不能となり破棄される。このため、本発明のための電源は、他の従来の電源とは異なる構造である必要がある。

[0117]

本発明にかかる装置は、装置内で使用されない場合の電池に求められる寿命と比較して、制限された寿命をもたせて構成される。このように構成すると、装置はこの規定された「寿命」の後には殆ど作動しない。電池などの内蔵型電源は、ある種の使用後に回復する機能がある。本発明への最適化では、装置は、規定された処置において、処置後に使用時間が経過したら継続処置が制限されるかできなくなるよう構成される。装置が回復して別の処置に再使用可能であっても、装置は予定される1回の使用期間または使用時間の集合範囲の外では電源が強化レベルで作動できなくなるよう設計される。これを念頭に、この装置電源の寿命または臨床上の寿命が規定され、この寿命は使用意志として説明されてもよい。この利用可能/臨床上の寿命は、装置が予想通り作動するかを確認する試験期間中の使用の期間または事象を含まない。この寿命はまた、装置が予定された処置以外で作動した、すなわち手術処置に関連して作動されなかった他の回数を含まない。

[0118]

市場で入手可能な従来の電池は、2種類の使用のために設計されている:(1)短期間でかなり大きな出力(例えばカメラのような大放出デジタル装置)、または(2)長期にわたって少ない出力(例えばコンピュータのクロックバックアップ)。これらの動作のいずれかでなければ、電池はヒートアップを開始する。これをチェックせず放置したら、電池は化学作用で例えば爆発するなどの有意な損傷を引きおこす場合がある。明らかに、電池の爆発は避けるべきである。このような極端な状態は、今までの電池でPTC装置・電池の温度が上がるにつれ電池の伝導を制限するよう構成された装置(正温度係数抵抗電設けることにより回避している。このPTC装置は電池および/または回路を過過でも設熱状態から保護する。重要なことは、PTC装置は電池を外部の回路短絡から保護でとともに、短絡回路が除去された後も電池が継続機能できるようにする。いくつかの電池では、ワンタイムヒューズを用いて回路短絡および/または過熱保護を保護している。しかしながら、ヒューズ付きの電池で偶発的な回路短絡があるとヒューズが開放され、電池が使用不能となる。PTCで保護された電池は、ヒューズ式電池に比べると、短絡回路が

10

20

30

40

20

30

40

50

除去されたら自動的にリセットして電池の通常動作を可能とするため利点がある。モータは何回か従来の一般的な高出力アプリケーションより大きい電流を流すため、このPTC 装置の特性の理解は本発明で重要となる。

[0119]

PTC装置は陽極および陰極と直列的に設けられ、例えば一部導電層を2つの導電層で挟んで構成される。この装置は、通常動作の温度(装置が適用される回路の状態によるが、例えば、室温から40°Cまで)では低抵抗状態である。例えば回路短絡の形成または過度の放電(装置が適用される回路の状態によるが、例えば60°Cから130°C)などにより異常な大電流が生じると、このPTC装置は極高抵抗モードに切り替わる。設置するだけでPTC装置は回路に含まれて、この回路に異常な電流が流れて装置が高温状態となると、これにより高抵抗状態となり回路を流れる電流を最低限のレベルに低減して、回路と電池の電気素子を保護する。最低レベル(例えばピーク電流の約20%)では、電池は「安全」レベルまで冷却され、大きな出力を供給できるようになる。このPTC装置の部分導電層は、例えば、カーボンパウダーとポリオレフィン樹脂で構成される。これらの装置はこの分野で説明されよく知られているため、これ以上の説明は不要である。

[0 1 2 0]

異なる製造元のPTC回路は異なる特性で動作するため、本発明はこれを役立てて特定のモータと特定の使用に適合する特定の電池を選択する最適化を行うことができる。PTC装置が高抵抗状態に切り替わった時間の確認を、特定のモータと電池へのドライブトレインを最適化する目安として用いることができる。いつPTC装置が切り替わるかを知ることが望ましく、これにより通常のステープラ使用においてPTC装置がこの変化を起こさなくなる。

[0121]

電池の実施例は、約3アンペアから約8アンペアまでの多様なレベルで用いられる。ハイエンドでは、PTC装置はほぼ即座に高抵抗状態へと変化して、標準的なCR123電池にこの電流レベルは高すぎるとする。4-6アンペアでは、ある製造元の電池は他の製造元の電池より早くPTCが作動することが判明している。第2の製造元のPTC移行期間は4アンペアで3分以上、5アンペアで約2分、6アンペアで約50秒である。これらの期間はいずれも、8秒ピーク負荷要求よりかなり大きい。したがって、第2の製造元の電池が、第1の製造元の電池と比較してピークアンペアでの使用に最適であることが判明する。

[0122]

当初は、低いか一定の出夏で高いアンペアとすると、電池から高出力が生成されると推測されていた。6セル直列構成に基づくと、ピーク電圧は18ボルトでピーク電流は6アンペアしかない。電池を並列とすると、理論的には、ピークアンペアが高くなり、3×2構成(3つの電池の直列セットを2つ並列にする)では、ピークで9ボルトでピークで12アンペアとなる。

[0123]

異なる多くの電池を検証したうえで、比較的低い電圧(約1.5-2ボルト)で約4-6アンペアとすると、最大のワット出力が生成されることが判明した。2つの6電池構成を確認してみた:6×1の直列接続と、3×2の並列接続である。3×2構成は、約10アンペアと大きなピークアンペアを生成した。6×1構成は、ピークアンペアがおよそ6であり、単一の電池ではPTC装置が状態を変える前にピークで5-6アンペアが可能であった。この情報は、使用時に直列グループの様々な個々の電池がそのPTC装置を作動させ、これによりグループ全体の電池を流れる電流が制限される。したがって、低い電圧でピークアンペアを生ずる暫定的な結論は、3×2構成が支持される。

[0124]

 4×1 、 6×1 、 3×2 の3つの異なる CR123 電池構成で、所定の通常のギア構成で 120 # 20

20

30

40

50

- 。120#負荷について、
- ・ 4 × 1 電池パックでは、約 2 . 5 アンペア、約 8 ボルトで、負荷を約 0 . 6 I P S で駆動した。
- ・ 6 × 1 電池パックでは、約 2 . 5 アンペア、約 1 3 ボルトで、負荷を約 0 . 9 I P S で駆動した。
- ・3 × 2 電池パックでは、約 2 . 5 アンペア、約 6 ボルトで、負荷を約 0 . 4 I P S で駆動した。
- 180#負荷について、
- ・ 4 × 1 電池パックでは、約 4 アンペア、約 7 . 5 ボルトで、負荷を約 0 . 6 5 I P S で駆動した。
- ・6 × 1 電池パックでは、約 4 アンペア、約 1 2 ボルトで、負荷を約 0 . 9 I P S で駆動した。
- ・3 × 2 電池パックでは、約 4 アンペア、約 7 ボルトで、負荷を約 0 . 4 I P S で駆動した。

明確に、ピーク電流は制限され、この限界は負荷に依存する。この実験は、所定の負荷では電源に拘わらず電流は同じとなるが、電池構成によって電圧は変化することを示している。各負荷について、予想通り、6 × 1 構成で出力が大きく、3 × 2 構成で少なかった。ここから、電池パックの合計出力は電流ではなく電圧により変化し、このため、並列構成(3 × 2)はこの電源を最適化する方法ではない。

[0125]

従来は、モータの仕様を設計する際に、モータの巻線は当該モータが駆動する予想電圧 に適合される。このマッチングは個々のサイクルの期間と製品に望む全体寿命とを勘案す る。電気ステープル装置の場合、モータは非常に短いサイクルかつ非常に短い寿命でのみ 使用され、従来の適合方法では最適とならない。モータの製造元は、巻線の巻数に応じて モータの定格電圧を決定している。巻数が少なければ、定格電圧も低い。所定のモータ巻 線のサイズ内では、巻数が少ないとワイヤを多く使用することができ、巻数が少ないと巻 線の抵抗が小さくなり、巻数が多いと抵抗が大きくなる。これらの特性は、このモータが オーバードライブした場合に熱とダメージの多くを生成するモータの最大電流を制限する 。本発明において望ましい構成は、巻線の抵抗が最小で、電源(すなわち電池パック)か ら最大電流を出すものである。モータの定格より高い電圧でモータを駆動すると、同じサ イズのモータでも有意に大きな出力を出す。この特性は、巻線抵抗(すなわち巻数)が異 なる以外は殆ど同一のコアレスモータを試験して得られる。例えば、6つの電池(すなわ ち、19.2ボルトで)で12ボルトと6ボルト定格のモータを駆動する。12ボルト定 格のモータは、0.7アンペアを出すときに電圧降下が僅か18ボルトでピーク出力が4 ワットである。比較すると、6ボルト定格で電圧降下が15ボルトのモータは出力15ワ ットだが、電流2アンペアである。このように、抵抗の低い巻線を選択して電池の出力を 十分に引き出すようにする。モータ巻線は特定の電池パックとバランスさせるべきであり 、失速状態ではモータはPTCを作動させるのに十分な電流を電池から引き出さず、この 状態では手術中に手術用電気ステープラを使用するのに許されない遅延例が生じる。

[0126]

6 × 1 の電池構成が、電気ステープル装置の要求を満たすのに十二分であることが分かる。それにも拘わらず、この時点で、要求される作業を行うのに6 つの電池が必要なのかを確認すべく電池をさらに最適化することができる。4 つの電池で試して、1 2 0 # 負荷の下で、モータ / ドライブトレインは6 0 m m スパン以上のラックを 3 秒以内に動かせなかった。6 つの電池で試して、1 2 0 # 負荷の下で、モータ / ドライブトレインは6 0 m m スパン以上のラックを、要求される3 秒よりかなり早い2 . 1 秒で動かせることが確認された。さらに、1 8 0 # 負荷の下では、モータ / ドライブトレインは6 0 m m スパン以上のラックを、要求される8 秒よりはるかに早い2 . 5 秒で動かせることが確認された。この時点で、「制御不能の(runaway)」ステープル / 切開が生じないように電源および機械レイアウトを最適化することが望ましく、換言すれば、負荷が要求される最大180

20

30

40

50

またはさらに最大120 # より有意に小さい場合、ラックはあまり早く動かない方が望ましい。

[0127]

ギアの減速比および駆動システムは、射出ストローク間にモータがピーク効率近くを維持するよう最適化される必要がある。 3 秒で 6 0 mmの望ましいストロークは、最小ラック速度が 2 0 mm / 秒 (~0.8インチ / 秒)を意味する。最適化処理の変数の数を減らすために、ギアボックス内で基本の減速が 3 3 3:1 にセットされる。これはギアボックスの出力シャフト 2 1 4 とラック 2 1 7 間に存在するギアで行われる最終的な減速を残しており、ここでギアは例えばベベルギア 2 1 5 と (ラックを駆動する)ピニオン 2 1 6 とを具え、その簡単な例が図 3 2 に示されている。

[0128]

これらの変数は、333:1ギアボックスの出力シャフト214の1回転で移動するラックのインチ数へと組み込むことができる。ギアボックスの出力(rpm)が変化しない場合、出力シャフトの回転(「IPR」)ごとに移動するラックのインチを出力rpmに合わせる簡単な機能で、以下に示す所望の速度を得ることができる:

(60rpm 1回転/秒(rps);1rps@0.8IPR 0.8インチ/秒)

このような理想化されたケースでは、速度に対してIPRをプロットすると、真っ直ぐ な線が出来上がる。固定の距離に対する速度は、さらに射出時間まで低減することができ る。したがって、IPRに対する射出時間のプロットもこの理想的なケースでは真っ直ぐ な線となる。しかしながら、モータの出力(rpm)と、それ故ギアボックスの出力は、 負荷によって変化するため一定ではない。負荷の程度により、モータが出力しうる出力量 が決定される。負荷が増えると、rpmが減り効率が変化する。負荷を変化させた効率試 験によると、効率のピークは丁度60%以上と判明している。しかしながら、このピーク 効率における対応する電圧とアンペアは、出力のピーク時点と同じではない。負荷が増大 するのに伴い、電力の増加速度より効率の定価が早くなるまで電力は増え続ける。IPR が増大すると、速度が増加することが見込まれるが、IPRの増加に対応して機械的利益 は低くなり、したがって負荷が増大する。この負荷が増大すると、段々増える高い負荷に 応じて効率が落ちることは、IPRが大きくなってもラックからの出力速度が大きくなら なくなる点が存在することを意味する。この性質は、IPRに対する射出時間(秒)のプ ロットにおける予測される真っ直ぐな線からの偏向として反映される。本発明のシステム の実験は、不要な機械的利益と不十分な機械的利益が約0.4IPRで生じることを示し ている。

[0129]

この I P R の値から、ベベルギア 2 1 5 の最終ギアの比を出力シャフトのスプロケットより約 3 倍大きくなるよう選択することが可能となる (3:1)。この比は約 0 .4 の I P R に変換される。

[0130]

ここでベベルギアが最適化されたら、電池パックを再び試験して6つの電池を5つやさらに4つまで減らして、費用を節約するとともにハンドル内における電源に必要な容量をかなり減らすことができるかを判定する。約120#の一定の負荷を最適化されたモータ、ドライブトレイン、ベベルギア、およびラックアンドピニオンに適用し、4つの電池を用いるとラックを60mm動かすのに約5秒間かかる結果となった。電池5つでは、この自家は約3.5秒に減った。6つの電池構成では、この時間は2.5秒であった。したがって、この曲線を補完した結果は、最低5.5の電池構成となる。電池は整数でのみ供給される事実から、電気ステープル装置の要求に合うには6つの電池構成が必要となることが分かる。

[0131]

このように、同じ電力特性を出すのに異なるサイズの電池を用いない限り、最小の電源量が固定値として算出される。CR2として参照されるリチウム電池は、CR123と似

20

30

40

50

た電力特性を有するが、より小さい。このため、CR2で6つの電池の電源とすると、スペースの要求が17%以上低減される。

[0132]

上記詳述したように、電源(すなわち電池)、ドライブトレイン、およびモータは、手術処置を完了するために必要な時間枠内で所望の出力を供給する全体効率のために最適化される。各種の電源、ドライブトレイン、およびモータが試験され、その後電源、ドライブトレイン、およびモータの種類が、前記試験に基づいて所望期間だけ最大出力を供給するように選択された。すなわち、最大電力条件(電圧と電流)が所定期間(例えば約15秒間)PTCを作動させずに存立しうるかが試験された。本発明は、電池がモータを駆動することにより力を抽出する方法を最適化する電圧・電流・電力の値を確認する。この最適化の後でも、電気ステープラ1の特性を改善する他の変更がなされてもよい。

[0133]

他の種類の電源を用いてもよく、これは本書で「ハイブリッド」電池と呼ぶ。この構成では、再充電可能なリチウムイオンまたはリチウムポリマ電池が1またはそれ以上の上述の最適化された電池(またはサイズが小さいが電圧が同等または高い他の一次電池)に接続されている。この構成では、1のCR2電池に含まれる合計エネルギがリチウムイオン電池を何回も充電するのに十分であるため、リチウムイオン電池がステープル/切開モータを駆動するが、一次電池は供給に限界がある。リチウムイオン電池やリチウムポリマ電池は内部抵抗が非常に低く、短期間で非常に高い電流供給が可能である。この有利な特性を活用すべく、一次電池(例えば、CR123、CR2または他の電池)は10乃至30秒間二次電池を充電し、これが射出時にモータの追加の電源を構成するようにしてもよい。リチウムイオン電池の代替例としてコンデンサの使用があるが、コンデンサは容量が不十分である。そうであっても、超コンデンサの使用があるが、コンデンサは容量が不力である。そうであっても、超コンデンサの使用があるが、コンデンサは容量が不力である。そうであっても、超コンデンサの使用があるが、コンデンサは容量が不力である。そうであっても、超コンデンサの使用があるが、コンデンサは容量が不力である。そうであっても、超コンデンサを追加の電力が必要と判断するまでここから電気的に分離されていてもよい。このようなとき、オペレータはコンデンサを追加のエネルギ「ブースト」として接続する。

[0 1 3 4]

上述したように、モータの負荷が所定の値を超えて増大した場合、効率は下がり始める。このような場合、複合比トランスミッションを用いて供給電力を所望期間変化させてもよい。効率が落ちるほど負荷が大きくなりすぎたら、複合比トランスミッションを用いてギア比を切り替えて、モータを例えば少なくとも180#の力を供給しうる高効率の地点まで戻す。ただし、本発明のモータは前後方向の双方で動作する必要があることに留意されたい。後者の動作モードでは、組織を挟んで「からまった」状況からモータはステープル/切開器具から切り離せる必要がある。このため、前進ギアより大きな力を生じるリバースギアが有利となる。

[0135]

例えば低ポンドから180ポンドまで大きく変化する負荷において、負荷範囲の下端部では駆動アセンブリが強力すぎてしまう可能性がある。このため、本発明は速度制御品で見えてもよい。考えられる制御装置は、散逸(能動)制御器と、受動制御器がある号の光国特許出願番号ののまり、例えばPa1merらの米国特許出願番号のの5/0277955号に開示されたエネルギ保存素子56、456がある。第1のる場合では、回転速度管理に用いており、このためモータが早くなりすぎた場合を返度管理機能を発揮する。他の種類の制御器は、モータがゆっくりと圧縮状態に圧縮でいま度管理機能を発揮する。他の種類の制御器は、モータがゆっくりと圧縮状態ににするには流がある。作動が必要な場合、圧縮されたバネが解放され、比較的短期間にでするに変になる制御器の例は、各ステージがそれでいまなでのエネルギがドライブへ伝達される。さらなる制御器の例は、各ステージがそれでいるででは、第1のスイッチまたはスイッチの第1の部分が作動して、電源回路における電池のかが接続される。より多くの電力が求められるに伴い、利用者(または自動化されたコンピュータ装置)が以降の追加の電池を電源回路に接続する。例えば、6つの電池構

20

30

40

50

成では、スイッチの第1の部分では最初の4つの電池を電源回路に接続し、スイッチの第 2の部分で5つめの電池を接続し、スイッチの第3の部分で6つめの電池を接続する。

[0136]

電気モータおよび付属のギアボックスは、使用時に一定のノイズを生じる。本発明のス テープラは、ハンドルからモータおよび/またはモータのドライブトレインを分離して音 声と振動特性の双方を低減し、したがって運用時に生じるノイズ全体を低減している。第 1の実施例では、ハンドル本体とモータおよびドライブトレインの双方との間にダンパ材 が設けられている。この材料は、ラテックス、ポリエステル、植物性の、ポリエーテル、 ポリエーテルイミド、ポリイミド、ポリオレフィン、ポリプロピレン、石灰酸、ポリイソ シアネート、ポリウレタン、シリコン、ビニル、エチレン共重合体、伸張ポリエチレン、 フルオロポリマー、またはスチロフォームなどの発泡体とすることができる。この材料は 、シリコン、ポリウレタン、クロロプレン、ブチル、ポリブタジエン、ネオプレン、天然 ラバー、またはイソプレンなどのエラストマであってもよい。発泡体は、閉細胞、開細胞 、軟質、網状、またはシンタクチックであってもよい。この材料は、ハンドルとモータ/ ギアボックスとの間の所定位置に配置されるか、モータ/ギアボックスを取り巻くチャン バ全体に充填されてもよい。第2の実施例では、モータとドライブトレインは、たまに「 中華ボックス」または「ロシアのネスト人形」などと称されるネスト状の筐体構造内に隔 離されてもよい。このような構成では、ダンパ材料はモータ/ギアボックスの周囲に配置 され、これら2つはギアボックスシャフトが突出する第1の筐体内に配置される。その後 、この第1の筐体が「第2の筐体」すなわちハンドル本体に搭載され、ダンパ材料は第1 の筐体とハンドル内側の間に配置される。

[0137]

本発明の電気ステープラは、手術に用いることができる。多くのステープル装置は一度 のみ使用可能である。コストが比較的低いため、これらは1の医療処置の後に廃棄するこ とができる。しかしながら、電気式の手術用ステープラはコストが高く、少なくともハン ドルを1より多い医療処置に使用することが望ましい。したがって、ハンドル部品の使用 後の殺菌が問題となる。使用前の殺菌も重要である。電気ステープラは、通常の殺菌処理 (すなわちスチームやガンマ照射)に一般に耐えられない電気要素を含むため、このステ ープラは、例えば酸化エチレンガスなど他に考えうるより高価な手段で殺菌する必要があ る。しかしながら、ガスによる殺菌にかかる費用を低減するため、ステープラがガンマ照 射による殺菌を可能とすることが望ましい。電子部品は宇宙で使用可能であることが知ら れており、それはこれらの電子部品がガンマ照射に晒される環境である。このような例で は、しかしながら、電子部品は晒されながら動作する必要がある。対照的に、電気ステー プラはガンマ殺菌照射に晒されている間に動作する必要はない。半導体を用いる場合、電 子部品への電源が落とされていても、ガンマ照射は保存されたメモリに悪影響を及ぼす。 これらの部品は、この照射に耐える必要があり、晒された後も使用可能となる必要がある 。これをふまえて、ハンドル内の電子部品をガンマ殺菌しうる多様な基準がある。第1に 、MOSFETメモリを使用する代わりに、ヒューズ可能リンクメモリを使用することが できる。このようなメモリでは、ヒューズがプログラムされる(焼かれる)と、メモリは 永久的にとなりガンマ殺菌に耐えられる。第2に、メモリをマスクプログラムする。メモ リにマスクを用いてハードプログラムすると、医療殺菌レベルのガンマ照射ではプログラ ムに悪影響は及ぼさない。第3に、揮発性メモリが空の間だけ殺菌を行い、殺菌後に様々 な測定を通じてメモリにプログラミングを行い、例えば赤外線、無線、超音波、ブルート ゥース通信を含むワイヤレスリンクを用いることができる。付加的あるいは代替的に、外 部電極を清潔な環境で接触させてこれらの導電体がメモリをプログラミングしてもよい。 最後に、放射線不透過性シールド(例えばモリブデンまたはタングステンで作成)をガン マ照射に敏感な部品の周りに設けて、これらの部品にダメージを与える可能性のある照射 に晒されるのを防いでもよい。

[0138]

上述したように、電池、ドライブトレイン、およびモータの特性は試験され、電気ステ

ープル用途のために最適化される。電池の特定の設計(すなわち過科学的および PTC)により、供給される電流量および / または一定期間で生成される電力量が決定される。通常のアルカリ電池では、短期間で電気ステープル装置を作動させるのに必要な高い電力を生成する能力がない。また、いくつかのリチウム・二酸化マンガン電池も、ステープル装置を作動させる要求を満たすことができない。このため、例えば電解質や正の温度係数など、特定のリチウム・二酸化マンガン電池の特性を試験した。

[0139]

従来のリチウム - 二酸化マンガン電池(例えば、CR123やCR2)は、長期の負荷用に設計されていると理解される。例えば、SUREFIRE(登録商標)はフラッシュ光源やこのような電池で売られており、フラッシュ光の最大出力ルーメンで電池が20分から数時間(3乃至6)持つと述べている。この期間の電池の負荷は電池の電力容量と離れており、このため、電池の危機的な電流レートには届かず、過熱や爆発の危険はない。このような利用が連続しなければ、電池はこの同じ最大出力で多くのサイクル(数百)を通じて長持ちする。

[0140]

簡単に言うと、このような電池は10秒またはそれ以下、例えば5秒の期間の負荷用に設計されておらず、また例えば15回などの少ない回数の使用のために設計されていない。本発明は、電源、ドライブトレイン、およびモータが、少ない使用回数でそれぞれの使用が10秒以下で負荷が定格よりかなり高い場合の電源(すなわち電池)を最適化するよう構成する。

[0141]

テストしたすべての一次電池は、各々のPTC装置および / または化学的性質と内部構造で規定される臨界電流をもつ。この臨界電流レートより上で所定期間使用されると、電池は過熱し、爆発するかもしれない。少ないサイクル数で非常に高い電力要求(PTC閾値に近い)に晒されると、電圧と電流のプロファイルは従来の通常使用と同じふるまいでなくなる。いくつかの電池は、本発明のステープラが要求する電力の生成を妨げるPTC装置を具えるが、他の電池はこの電気ステープル装置に電力供給するのに必要な電力を生成することができる(所望の電圧で電流を供給できる)。これは臨界電流レートが特定の化学的性質、構造、および / または電池のPTCによって異なることを意味する。

[0142]

本発明は、電源が臨界電流レートより上の範囲で動作するよう構成しており、これを本 書で「超臨界電流レート」と称する。超臨界電流レートの定義には、電源から供給される 臨界電流レートより上の変調電流の平均化が含まれることに留意されたい。超臨界電流レ ートで電力供給を行うと電池は長持ちしないため、その使用期間は短くなる。この電池が 超臨界電流レートで駆動できる短い期間を本書で「超臨界パルス放出期間」と称し、電源 が作動する期間全体を「パルス放出期間」と称する。換言すれば、超臨界パルス放出期間 はパルス放出期間と同じか短い時間であり、電流レートが電池の臨界電流レートより大き い期間である。本発明における超臨界パルス放出期間は約16秒より短く、言い換えると 約半分から15秒の範囲であり、例えば2乃至4秒であり、より具体的には約3秒である 。この電源は、ステープル装置の寿命内で、例えば臨床処置の時間内で1回以上20回以 下、例えば約5乃至15回、より具体的には10乃至15回を5分以内で、パルス放出期 間において超臨界電流レートにかけられる。このため、電源の通常の適用時間に比べて、 本発明は集中した使用となり、これを集中パルス時間といい、多くの場合に約200万至 3 0 0 秒であり、具体的には約 2 2 5 秒である。器具に設けられる負荷は具体的な臨床ア プリケーションに依存するため(すなわち、いくつかの組織は他より密集しており、組織 密度が高いと装置にかかる負荷が大きくなる)、作動中、装置が所定の処置において超臨 界電流レートを超えるか常に超えることは必要でない。しかしながら、手術処置での使用 時にステープラは何回か超臨界電流レートを超えられるように設計される。超臨界パルス 放出期間の動作では、装置は所望の手術処置を完了すべく十分な回数だけ動作可能である が、電池は大きな電流で動作するよう求められるためあまり多くはない。

10

20

30

40

20

30

40

50

[0143]

増大させた範囲で動作するとき、例えば電気ステープラ1の装置が生成する力は、既存 の手動ステープラよりかなり大きくなる。事実、この力はかなり大きくステープラ自身に ダメージを与える場合もある。使用の一態様では、モータおよび駆動アセンブリは、ステ ープルカートリッジがないかステープルカートリッジホルダ1030に直前に射出された ステープルカートリッジがある場合にナイフブレード1060が前進するのを防ぐ安全機 構である、ナイフブレードロックアウト機能を損傷するまで作動してもよい。この構造が 図33に示されている。上述したように、ナイフブレード1060は射出可能位置にステ ープルスレッド102がある場合、すなわちスレッド102が図33に示す位置にある場 合にのみ遠位方向に移動可能とするべきである。スレッド102がその位置にない場合、 2 つの場合があり、ホルダ1030内にステープルカートリッジがないか、スレッド10 2 が既に遠位方向に移動しているかであり、すなわちロードされたステープルカートリッ ジで射出が部分的または完全に生じていることを意味する。このため、ブレード1060 は動いてはならず、またはその動きが制限されるべきである。したがって、スレッド10 2 が射出段階でブレード 1 0 6 0 を支えられるよう、スレッド 1 0 2 はロックアウト接触 面104を具え、ブレード1060には対応する形状の接触ノーズ1069が設けられて いる。この地点で、ブレード1060がエッジ1035を超えて遠位方向に移動しない限 り、下側ガイドウィング1065はカートリッジホルダ1030のフロア1034に対し て静止しない。このような構成により、スレッド102がノーズ1069を支持すべくブ レード1060の遠位端部にない場合、下側ガイドウィング1065はエッジ1035の 近くまで凹部1037に追随し、そしてフロア1034上で前進する代わりにエッジ10 35に当たりブレード1060のさらなる前進移動が防止される。スレッド102がない 場合(「ロックアウト」と称す)にこの接触を補助するために、ステープルカートリッジ 1030はブレード1060を付勢する(1以上のリベット1036でそこに取り付けら れた)プレートバネ1090を具える。プレートバネ1090が上側に曲がり、フランジ 1067を(フランジ1067がプレートバネ1090の遠位端部の遠位側にくるまで) 下側に押すと、下側に向いた力はブレード1060にかけられウィング1065を下側に 凹部1037内へと押す。これにより、ブレード1060はスレッド102がなくても遠 位側に進み、ウィング1065は凹部1037の下側カーブに沿って移動し、ウィング1 065の遠位端縁がエッジ1035に当たるとさらなる遠位移動が止まる。

[0144]

この安全構造は、ナイフブレード1062からブレード1060に伝わる力がブレード 1060から下側ガイドウィング1065を切り取るのに不十分である限り、上述のよう に動作する。本発明の電源、モータ、およびドライブトレインで生成しうる力により、ブ レード1060は遠位側に強く押されてウィング1065が引きはがされる。これが生じ ると、ブレード1060またはスレッド102の遠位側への移動を防ぐ手段はない。した がって、本発明は、ウィング1065がエッジ1035を超える前に、ここにかけられる 力を低減する方法を提供する。換言すると、ブレード1060にかけることができる力の 上限は、(エッジ1035を超える)ブレード移動の第1の部分では低減され、ウィング 1065がエッジ1035を一掃してフロア1034上で静止した後に増大する。より具 体的には、これらの2つの部分の力発生リミッタの第1実施例は、ステープル/切開スト ロークの第1の部分で電源における1かもう少しのみの電池をモータに接続し、ステープ ル/切開ストロークの第2の部分で電源における大部分または全部の電池をモータに接続 する回路の形をとる。このような回路の第1実施例が図34に示されている。この第1実 施例では、スイッチ1100が「A」の位置にある場合、モータ(例えばステープルモー タ210)は(本実施例で利用可能な4つのうち)1の電池602のみで駆動される。し かしながら、スイッチ1100が「B」の位置にある場合、モータは電源600の4つ全 部の電池602で 駆動され、これによりブレード1060にかかる力の量が増大する。 スイッチ1100をAとBの位置で制御するには、第2のスイッチをブレード制御アセン ブリのどこかまたはスレッド102に沿って配設し、この第2のスイッチがウィング10

65がエッジ1035を通り過ぎたら制御部に信号を送るようにする。この制御回路の第1実施例は単なる例示であり、同じ機能のアセンブリを装置のロックアウト保護に用意することが可能であり、これには例えば図36に示す第2実施例がある。

[0145]

モータの前後制御回路の第1の実施例が、図35に示されている。この第1実施例は二極双投スイッチ1200を用いる。このスイッチ1200は通常、両極がオフとなるセンター位置にバネ付勢されている。図示するモータMは、例えば、本発明のステープルイッチ1210を閉じる必要がある。図示するように、装置をオンにするにはパワーオンスイッチ1210を閉じる必要がある。もちろん、このスイッチは任意である。モータMの前進駆動を望む場合、スイッチ1200は図35に示すように右の位置に配置され、これによりモータを第1の方向に駆動するようにモータに電力が供給され、これは電池の「+」がモータMの「+」に接続されるため前進方向として規定される。この前進スイッチ位は、モータMのブレード1060を遠位方向に駆動する。ブレード1060またはスレッド102の所望位置の最前部に適切なセンサまたはスイッチを設けると、モータMの電がはいている限りさらなる前進移動を防止することができる。このスイッチ1220が閉じて回路が完成しないよう、あるいは例えば新たなステープルカートリッジが装填された場合にスイッチ1220のリセットのみを許可するよう、回路をプログラムすることができる

[0146]

モータMの後進駆動を望む場合、スイッチ1200は図35に示す左の位置に配置され、これによりモータを第2の方向に駆動するようにモータに電力が供給され、これは電池の「・」がモータMの「+」に接続されるため後進方向として規定される。この後進スイッチ位置では、モータMはブレード1060を近位方向に駆動する。ブレード1060またはスレッド102の所望位置の最後部に適切なセンサまたはスイッチを設けると、モータMの電力供給を遮断する後進移動リミットスイッチ1230を制御して、このスイッチ1230が開いている限りさらなる後進移動を防止することができる。他のスイッチ(点線矢印で示す)を回路内に設けて、リミットスイッチ1220、1230とは別にどちらの方向への移動も選択的に制限してもよいことに留意されたい。

[0147]

モータはかなり大きな力でギアトレインを駆動することができ、これが高い回転慣性に変換される。このようにして、図34、35で説明したどのスイッチをモータのオフ切換に用いた場合でも、ギアは直ちに止まらない場合がある。代わりに、例えばモータへの電力が遮断された場合でもラック217が回転慣性によりそれまで移動していた方向に進み続ける。この動作は多くの理由で不利益となる。電源とモータを適切に構成することにより、このような遮断後の動作をほぼなくした回路を構成することができ、これにより利用者が動作をより制御できるようになる。

[0148]

10

20

30

40

20

30

40

50

く、これはブレークビフォアメークスイッチング構成とも呼ばれる。モータMの動作をモータMを制動するよう切り換えると、モータの回路短絡が作用する前に前進 / 後進スイッチ 1 3 0 0 の二極双投部分が開放される。逆に、モータMのプレーキ状態からモータMを駆動する場合、スイッチ 1 3 0 0 がモータを作動させる前に短絡回路が開放される。これにより、運用では、利用者が 3 ウェイスイッチ 1 3 0 0 を前進または後進位置から解除すると、モータ M が回路短絡して迅速に制動される。

[0149]

図36における他の構造は、図35に関連して説明されている。例えば、オン/オフスイッチ1210が設けられている。電力ロックアウトスイッチ1100もあり、動作の所定部分で1の電池602′のみでモータ駆動し(ストロークの最初または他の所望部分で生じる)、動作の他の部分で全部の電池602(ここでは6つの電池)でモータMを駆動する。

[0150]

後進および前進リミットスイッチ1320、1330の新たな構成により、前進リミットスイッチ1320が作動した後にモータMのさらなる前進駆動が防止される。このリミットに達したら、前進リミットスイッチ1320が作動して、スイッチが第2の位置に切り替わる。この状態では、モータに前進駆動させる電力が入らないが、後進駆動させる電力が入らないが、後進駆動させる電力は供給することができる。この前進リミットスイッチは、所定のステープルカートリッジ用にトグルまたはワンタイム使用となるようプログラムすることができる。より具体的には、スイッチ1320は、ステープルカートリッジを新たなものと交換するようリセットされるまで第2の位置を保持する。したがって、交換されるまでは、モータMは後進方向にのみ駆動しうる。スイッチが単なるトグルである場合、スイッチ1320の作動から動作の一部が退かれた場合にのみ、追加のさらなる動作用に電力が復元される。

[0151]

後進リミットスイッチ1330も同様に構成することができる。後進リミットに達したら、スイッチ1330が第2の位置に切り替わり、リセットされるまでこれを保持する。この位置では、モータMは回路短絡しており、いずれの方向にもモータは駆動しない。この構成により、ステープラの動作は前進リミットまでの一度のストロークと、後進リミットまでの一度の引き戻しに限定される。両方が起こった場合、モータMは2つのスイッチ1320がリセットされるまで使用不能となる。

[0152]

[0153]

図38は装置1000の機械的アセンブリを示しており、左側フレーム1010が除去されている。図40は、比較的に、左、右側のフレーム1010、1020の双方が除去された機械的アセンブリを示している。

20

30

40

50

[0154]

図 3 7 はギアカバープレート 1 1 0 5 を示しており、モータトラスミッションアセンブリの 1、2、3 段ギア 1 1 1 0、1 1 2 0、1 1 3 0 である。また、図 3 7 に示されているのはエンドエフェクタクロージングアセンブリ 1 4 0 0 である。このエンドエフェクタクロージングアセンブリ 1 4 0 0 に詳細に図示されている。

[0155]

図37乃至38はまた、電気駆動および駆動制御アセンブリを示している。この例示的な実施例での電気駆動アセンブリ1500は、1以上のバッテリ1510を含む取り外外で能なバッテリパックである。上述のように、一の例示的な電源はCR123またはCR2電池の4乃至6の直列接続である。ここでは、6つのバッテリ1510がある。これらのバッテリ1510aのうち図37の上部左側にある1つは、電気的に切り離し可能に構成されていて、電力がモータ1520に選択的に、単一の電池1510aか6つのバッテリ1510の全セットのどちらか一方を通って供給されるよう設けられている。これは、わずかな電力しか必要としない場所または全トルクの禁止が望まれる場所でのアプリケートがロックアウトを越えて動くこととして上述されている。例示的な回路は、ステープル/切開ストロークの第1部の間、この1の電池1510aをモータ1520に接続し、ステープル/切開ストロークの第2部の間、電源供給における電池1510、1510aの全てがモータ1520に接続される。図34を参照されたい。

[0156]

例示的な実施例での電源制御アセンブリ1600は、ロッカースイッチ1610の形態をとる。ロッカースイッチ1610の1の作動方向において、モータ1520は第1の方向、例えば前方へ回転し、ロッカースイッチ1610の別の作動方向において、モータ1520は反対の第2の方向、例えば後方に回転する。

[0157]

例示的な実施例での電気駆動式ドライブトレインは、線形カッター/ステープラの一形態を駆動すべく用いられる。ここでは、ドライブトレインは、ステープル/切開動作を実行すべく用いられる。このためドライブトレインは、線形アクチュエータ1700に接続され、本実施例では、ラックガイド1720に沿って遠位および近位に移動する歯付のラックの形態である。図38に示されているように、ラック1700は相対的に近位位置にある。近位端部(図38の右側)でシェル1001、1002のサイズを最小にするために、ラック1700は、回転部1710がラックガイド1720内に含まれない場合、(図38で見られるような)下向きに自由に回転する回転部1710を有する。ラック1700が遠位(図38で左側)に動くとき、回転部1710の底部はラックガイド1720の近位端部に接触し、ラックガイド1720の形状のため、ラック1700の残りの部分とほぼ同軸である位置へと上方に回転する。ラックガイド1720の近位端部は図41で見られる。

[0158]

ラック1700の歯1702は、ラックアンドピニオン構造におけるドライブトレインの最終段と相互作用するよう形成されている。ドライブトレインの様々な形態が、実際には図37乃至47のすべてで見ることができるが、ドライブトレインの詳細は、特に図43および46を参照して容易に見ることができる。多くの図に見られる変速段のいくつかは歯を持たないことに注目されたい。これは、これらのギアが単に具体的な実施例の概略図であるからである。このように、歯がない場合や、歯の数やサイズが存在する場合でも、限定または固定と解されるべきではない。さらに、図示されるギアの多くは、歯の内側に配置された中央バンドを有する。このバンドは、装置1000の一部と見なされるべきではなく、単にこのアプリケーションの図を作成するのに用いられたソフトウェアの限定である。

[0159]

ドライブトレインの説明はモータ1520から始まる。モータ1520の出力ギア15

20

30

40

50

2 2 が変速機の1段1110、2段1120、および3段1130に接続される。3段1130は、装置1000の左側に存在する最終段に接続される。この接続は内部配置のため、全ての図で見ることは困難である。図55乃至56は、しかしながら、3段1130のから4段のクロスオーバーギア1140への接続を示す。上述のように、3段1130の出力は、歯がない円筒として概略的に図示されている。続けて図46を見ると、クロスオーバーギア1140は4段軸1142に回転接続され、その軸1142は装置1000の左側から右側へとラック1700を横切る。軸1142の右側は、右側のギアのいずれにも回転形態で直接接続されていない。代わりに、右側フレーム1020内の対応するポケット内に嵌合するシャフトベアリング1144内で回転し、ここでフレーム1020は図46では除去されており、右側ドライブトレインを見ることができる。

[0160]

キャッスルギア1146(図53に単独で示されている)は、クロスオーバーシャフト 1142上に配置され、ともに回転するよう固定されているが、縦にしか動くことができ ない。このような接続を可能にするために、軸1142は図示されない内部スロットを有 し、キャッスルギア1146の2つの対向するポート11462を通る図示されないピン が配置されている。ピンをキャッスルギア1146にしっかり固定することにより、軸1 142の回転によりキャッスルギア1146に付随する回転が生じるが、未だキャッスル ギア1146は、少なくとも軸1142のスロットまで軸1142の縦軸に沿って自由に 動くことができる。図46に見られるように、キャッスルギア1146の右側の胸壁11 464は、図54に単独で示されている4段ピニオン1148の左側の対応する胸壁スロ ット11482の間に嵌合するよう形成されている。キャッスルギア1146が4段ピニ オン1148に確実に接合される必要があるため、右側の付勢力Fが必要となる。この付 勢力を供給するため、図示しない圧縮バネを、例えば、一端部がクロスオーバーギア11 40の右側面へ接触し、他方の端部がキャッスルギア1146の外側円筒面から放射状に 離れて突出する中央フランジ11468の左側面へ接触するように設けてもよい。(この フランジ11468は、装置1000の手動解放特性に関してより詳細に後述される。) 様々な別の同様に機能する付勢装置が、例示したバネの代わりに用いられてもよい。この ような構成は、キャッスルギア1146を4段ピニオン1148に選択的、回転的に係合 可能にする。より具体的には、キャッスルギア1146が付勢装置の力F以外のいかなる 力も受けない場合、胸壁11464は胸壁スロット11482と合致し、軸1142の回 転が4段ピニオン1148の回転を起こさせる。しかしながら、付勢力Fに対向し、越え る力がかかる場合、胸壁 1 1 4 6 4 は胸壁スロット 1 1 4 8 2 から出て、軸 1 1 4 2 の回 転は4段ピニオン1148にまったく影響を与えない。この選択的な係合により、手動解 放を実現することができる。このような開放を説明する前に、右側ドライブトレインが説 明される。

[0161]

4段ピニオン1148はドライブトレインの5段1150に直接接続され、これは5段軸1152と、5段軸1152に回転固定される5段入力ギア1154と、5段軸1152にまた回転固定される5段ピニオン1156の歯はラック1700の歯1702に直接接続される。こうして、5段入力ギア1154の回転により、5段ピニオンの回転およびラック1700の縦の動きが生じる。図46の例示的な実施例に見られるように、5段入力ギア1154の時計回りの回転は、ラック1700(後退)に近位方向の動きを起こさせ、5段入力ギア1154の反時計回りの回転は、ラック1700(伸長)に遠位方向の動きを起こさせる。

[0162]

上記ドライブトレインの5段の接続によると、モータ軸の一方向の回転はラック1700に縦の動きを起こさせるが、これはキャッスルギア1146が4段ピニオン1148と係合される場合のみである。キャッスルギア1146が4段ピニオン1148と係合されない場合は、モータの回転はラック1700に影響を与えない。この2つのギア1146と1148が非接続状態となると、ラック1700の手動解放が実現する。

20

30

40

[0163]

装置1000の運用において、ラック1700はエンドエフェクタのいくつかの部分を作動させるように遠位方向に動く(伸長する)。線形ステープル/切除装置の実施例において、ラック1700が遠位に動くと、ステープル留めおよび切開を起こさせるスレッドは、ステープル留めおよび切開の双方を実行すべく遠位方向に動く。エンドエフェクタの顎部の間に配置される組織は、実際には各手術処置で異なるので、施術者は、(ステープリングアクチュエータおよび切断プレードを担持する)スレッドが何らかの理由で引っかかったり動かなくなる回数を予測できない。このような場合、スレッドは、モータを使用することなく遠位に引き戻す必要がある。また、電力を損失したりモータは壊損により、エンドエフィクタの顎部は間に組織を挟んで閉じたままになり、したがって、顎やカシャフトが固定される可能性もある。スレッドが遠位位置にある場合にこれが起こるが開き、組織が解放される前に、スレッドを近位に移動させなければならない。このような場合において、モータを使用することなく、ラック1700は遠位に後退する必要がある。これらの所望の機能を有効にするために、本発明は手動解放アセンブリ1800を提供する。

[0164]

図37乃至44、55および59乃至62の各々において、手動解放レバー1810は 非作動(例えば下)位置にある。図45および57において、手動解放レバー1810は 中間位置にある。図46、47、56、および58において、手動解放レバー1810は 、完全に作動(例えば上)位置にある。

[0165]

図44に見られるように、手動解放レバー1810が非作動位置にある場合、キャッス ルギア 1 1 4 6 は 4 段ピニオン 1 1 4 8 に係合される。これによりモータ 1 5 2 0 の出力 ギア1522の回転が、ラック1700を動かす。しかしながら、4段ピニオン1148 は5段入力ギア1154に直接接続されるだけではない。4段ピニオン1148は、1段 解放ギア1820にも直接接続され、これが2段解放ギア1830に直接接続される。こ うして、4段ピニオン1148の回転が、必然的に2段解放ギア1830を回転させる(その方向は、その間にあるギアの数による)。このギア1830の軸が手動解放レバー1 8 1 0 に直接接続される場合、レバー 1 8 1 0 は 4 段ピニオン 1 1 4 8 が回転する度に回 転する。 4 段ピニオン 1 1 4 8 が 1 回転以上回転すると、レバー 1 8 1 0 は 3 6 0 度完全 に回転することが可能である。予想されるように、手動解放レバー1810を2段解放ギ ア1830(以下の図48の説明を参照)に連結する一方向ギアアセンブリがあるため、 これは起こらない。1段解放ギア1820は、そこから同軸上に延びる歯付軸1822を 有することに注目されたい。この歯付軸1822はインジケータホイール1840に直接 連結される。ホイール1840の右側面は、ホイール1840の軸の周りに直線的に延び る湾曲形状となっており、表面の残りの部分と異なる色を有する。右側シェル1002(図64乃至65を参照)にある窓1004に連結される場合、色の着いた形状は、完全な 近位(すなわち後退した)位置から動いたラック1700の直線距離に対応する線形様式 で、よりよく見えるようになる。

[0166]

手動解放レバー1810を2段解放ギア1830に連結する一方向ギアアセンブリは、図48に示されている。このアセンブリは、レバー1810の回動点で中心付けされたラチェットギア1850を設け、当該ラチェットギア1850の軸1852を2段解放ギア1830の中心ボア1832の中を通って伸長させることによって形成される。このように軸1852を2段解放ギア1830のがア1832に固定すると、2段解放ギア1830の回転により、対応してラチェットギア1850が回転する。しかし、単にこのラチェットギア1850を2段解放ギア1830とともに回転させるだけでは、モータ1520がドライブトレインに電力を供給していない場合にラック1700の手動解放をアシストしない。

[0167]

20

30

40

50

手動解放機能を作り出すには 2 つの要素がある。まず、右側ギアトレインを左側ギアトレインおよびモータから切り離す装置である。これにより、手動開放を作動させるときに、モータ 1520 および左側トレインのギアの双方によって生じる抵抗を乗り越えなくてもよくなる。この切り離しは、キャッスルギア 1146 が4段ピニオン 1148 から離れる場合に起こる。この切り離しを起こすために、カムプレート 1860 がラチェットギア 1850 と 2 段解放ギア 1830 のとの間に配置され、軸 1852 に回転固定される。カムプレート 1860 は、図 52 に示されている。カムプレート 1860 には、キャッスルギア 11460 中央フランジ 11468 と相互作用するよう配置される傾斜カム面 1862 が設けられている。カムプレート 1860 と中央フランジ 11468 との相互作用は、図 1862 公 1862 の 1862

[0168]

図44では、手動解放レバー1810は非作動位置にあり、これはキャッスルギア1146が4段ピニオン1148に回転可能に接続されることが望まれることを意味する。この方法において、モータ1520の回転は、4段ピニオン1148の回転およびラック1700の動きに変換される。図45乃至47および57乃至58において、手動解放レバー1810は複数の作動位置のうちの1つにあり、これらはそれぞれ、カムプレート1860を回転させて、これにより傾斜したカム面1862がキャッスルギア1146の中央フランジ11468に接触し、十分にキャッスルギア1146を左側に押しやって胸壁11464が4段ピニオン1148の胸壁スロット11482から分離するよう図示されている。この位置において、キャッスルギア1146は、4段ピニオン1148から回転的に切り離されている。このように、モータ1520の回転(または左側トレインのギア)は右側ギアトレインから完全に独立し、こうしてモータ1520の回転によってラック1700が動かないようにしている。

[0169]

右側ギアトレインが右側モータおよびギアトレインから回転可能に独立し、手動ラック 解放機能を持つようになった後、ラック1700は近位方向に動く必要がある。この動き をもたらすために、第2の手動解放装置が設けられる。この第2の手動解放装置はラチェ ットギア1850の歯1832と相互作用し、手動解放レバー1810の反時計回りの回 転が(装置1000の右側から見た場合)ラチェットギア1850を時計回りに回転させ (この向きは、この回転が5段ピニオン1156を時計回りに回転させるので、例示的な 実施例で所望される)、これはラック1700の近位の動き(すなわち後退)に相当する 回転である。ラチェットギア1850をこの時計回りのレバー1810の動きを用いて制 御するために、本発明はレバー1810のロッキングボス1814に回転可能に取り付け られるラチェット爪1870を提供する。この構成は図48にうまく例示されている。図 示しない板バネがレバー1810のスプリングチャネル1816に固定され、ラチェット ギア1850に向かう方向Dに爪1870を付勢する。爪1870が何らかの方法で抑止 されない場合、爪1870は常にラチェットギア1850の歯1852に接触し、本実施 例においてキャッスルギア1146および4段ピニオン1148が互いに係合し(すなわ ち図44を参照)共に回転する場合に生じるギア1850の時計周りの回転を防ぐことに 注目されたい。この状態を防ぐために図44および55に示されているように、爪187 0の遠位端部は爪キャビティ1818から2段解放ギア1830へと伸長する拡大部18 72を有する。2段解放ギア1830とカムプレート1870の間に第2のカムプレート 1 8 8 0 があるため、爪カム 1 8 8 2 を拡大部 1 8 7 2 の底面に接触するよう配置して、 レバー1810がホームまたは非作動位置にある場合に、(Dと反対向きで、板バネの付 勢に反する力を提供することにより)爪1870を爪キャビティ1818に保持すること ができる。爪1870と爪カム1882間の接触は、図44および55に示されている。 したがって、レバー1810が作動されない場合、爪1870はラチェットギア1850 の歯1852と接触しない。これに対し、手動解放が4段ピニオン1148からラチェッ トギア1850を離すのに十分な位置を過ぎて回転した場合、爪1870の底面はもはや 回転していないカムプレート1880の爪カム1882と接触せず、したがって、時計回

20

30

40

りに回転する場合、(板バネの付勢力によって) D の向きに自由に動いてラチェットギア 1 8 5 0 の歯 1 8 5 2 に係合する。このように、時計回りに回転する場合、爪 1 8 7 0 は歯 1 8 5 2 の上面に対して歯止めされる。

[0170]

レバー1810を例えば約15度動かした後、爪1870は、もはや爪カム1882と 接触せず、キャッスルギア1146の胸壁11464は、もはや4段ピニオン1148の 胸壁スロット11482と係合しない。このポイントにおいて、爪1870は軸1852 の方へ動くことができ、ラチェットギア1850の歯1852の1つと係合する。さらに . レバー1810の反時計回りの動きがラチェットギア1850を回転させ、これに応じ て2段解放ギア1830が時計回りに回転する。順に、2段解放ギア1830の回転は1 段解放ギア1820を時計回りに回転させ、4段ピニオン1148を反時計回りに回転さ せ、5段入力ギア1154を時計回りにそれぞれ回転させる。上述のように、5段入力ギ ア1154の時計回りの回転により、ラック1700の近位の動きが生じ、これはラック 1700に接続されるエンドエフェクタ特性の手動解放において望まれる移動方向である 。レバー1810が解放されると、戻りバイアス1890はレバー1810を非作動位置 (図44を参照)に戻し、これにより爪カム1882が爪1870を、ラチェットギア1 8 5 0 の歯 1 8 5 2 から外される爪キャビティ 1 8 1 8 の上部位置に戻す。爪カム 1 8 8 2と拡大部1872の下面間の接触は、爪カム1882の各上部正面と上部後面および拡 大部1872の底部正面と底部後面を成形することによりスムースになることに注目され たい。さらに、例えばコイルバネといった、戻りバイアス1890が図46、57、およ び58に示されており、その一端はレバー1810に固定されるボルト周りに巻かれ、反 対の他端はシェル1001、1002の一部に固定されるシャフトであり、図63乃至6 6に示されている。コイルバネ1890の反対の軸は、描画プログラムの限界のため図の みで動く。この動きは本発明では生じない。

[0171]

上述のように、本発明の装置1000のためのエンドエフェクタの一実施例は、その間 に配置される組織上で閉じる一組の顎部と、切開される組織の2つの側部を互いに固定す るステープラ / カッターとを具える。上記の手動解放はステープラ / カッターに取り付け 可能であり、エンドエフェクタクロージングアセンブリ1400は、作動時に、顎部を一 緒に閉じるために顎部に取り付け可能である。図59乃至60は、顎部とエンドエフェク タクロージングアセンブリ1400の取り付けの一実施例を図示する。ここで、エンドエ フェクタクロージングアセンブリ1400はレバーサポート1412を有し、ハンドルピ ボット1414周りに回転するハンドル1410を具える。このレバーサポート1412 はリンク1420の第1の端部に回転接続される。リンク1420の反対の第2の端部は 、スライダシャフト1430に回転接続される。エンドエフェクタシャフトアセンブリ1 9 0 0 は外側シャフト 1 9 1 0 と内側シャフト 1 9 2 0 を具える。内側シャフト 1 9 1 0 はフレーム1010、1020およびエンドエフェクタの下顎に縦に固定され、このため 、エンドエフェクタに縦に固定された要素となる。外側シャフト1920は内側シャフト 1910に連結され、そこで縦に動く。エンドエフェクタの上顎は下顎に関して回転する 。回転させるために、外側シャフト1920は、図59に示されている近位位置から、図 6 0 に示されている遠位位置に伸長される。外側シャフト1920 が内側シャフトを囲む ので、一部分(例えば上部)が、上顎ピボットの近位位置である開口した上顎の近位端部 に接触する。外側シャフト1920がさらに遠位に動くとき、上顎は固定ピボット位置の ため遠位に動くことができないが、そのピボットの周りを回転可能である。したがって、 上顎は、縦に固定された下の顎の上に閉じる。換言すると、図59乃至図60の工程で見 られるように、ハンドル1410が電気アセンブリ1500に向かって動くと、スライダ 1430は図59の近位位置から図60の遠位位置へと縦方向に動く。この従来技術の顎 アセンブリは、Echelon EC60によって製造された線形ステープラに存在する

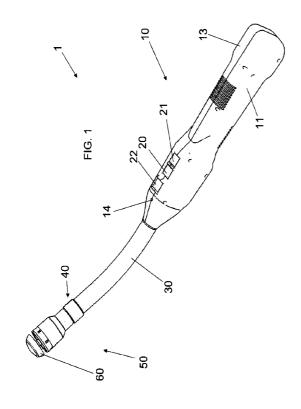
エンドエフェクタシャフトアセンブリ1900のこの例示的な構成は、2007年8月24日に出願された米国特許出願番号第11/844,406号を含む同時係属中のファミリーに示されたエンドエフェクタの動作と反対であることに注目されたい。この出願に示されているように、図39および40では、下顎/ステープルカートリッジホルダ1030は隙間1031上を近位方向に動く際、上部アンビル1020の近位上端が縦に固定されたドラムスリーブ1040に対して押圧されるので、上部アンビル1020は下方に回転する。

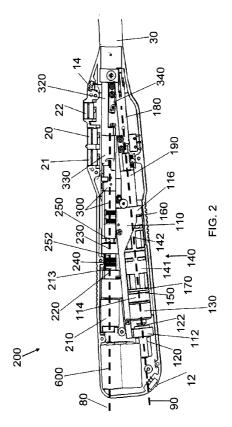
[0173]

上述のEchelon EC60といった従来の様々な従来技術の線形ステープラは、同じエンドエフェクタおよび軸を用いている。したがって、本発明の装置1000は、これら従来のエンドエフェクタアセンブリを内部に嵌合しうることが望ましい。このことは、例えば、図61乃至62に示されているような左右フレーム1010、1020を構成することにより達成される。これらのフレーム1010、1020は、図62に示されている。この構成において、従来のエンドエフェクタシャフトアセンブリの内側シャフト1910の近位端部は、そこで内側シャフト1910(全アセンブリ)を縦に固定するように、各タブ1012、1022間に単に隣接させ、その方向を除いた全ての半径方向間で内側シャフト1910を横に固定し、内側シャフト1910がフレーム1010、1020間の開口に挿入される。この開口を閉じるために、シャフトプラグ1930は、例えば図61に示されているようなボルトを用いて、タブ1012、1022間に固定される。別の代替的な実施例において、シャフトプラグ1930は、例えば図61に示されているようなボルトを用いて、タブ1012、1022間に固定される。別の代替的な実施例において、シャフトプラグ1930は、それらを一緒に設けて二枚貝のデザインに形成し、内側シャフト1910周りに固定する。

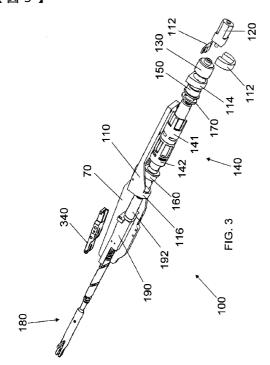
[0174]

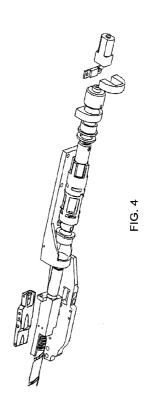
上記の説明や添付の図面は、本発明の原理と、好適な実施例と、動作モードとを示す。より具体的には、本発明の最適化された電源、モータ、およびドライブトレインは、手術用ステープラに関して説明されている。しかしながら、本発明は上述した具体的な実施例に限定されると解釈されてはならない。当業者であれば、上述した実施例のさらなる変更を理解することができ、電力または出力電流が制限された電池で短く限られた時間だけ大きな電力または出力電流を必要とする手術デバイス以外の応用例も同様である。図示し説明したように、本発明の最適化によれば、限られた電源で、例えば82kg以上のおよその重量を持ち上げ、押し、引き、引きずり、引き戻し、または他の種類の力を供給することができる。

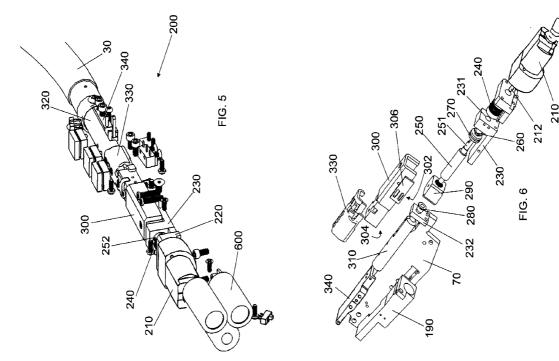

[0175]


上述した実施例は、説明のためであって限定するものではない。したがって、当業者であれば添付のクレームに規定された本発明の範囲を逸脱することなく、これらの実施例の変形例を理解することができる。

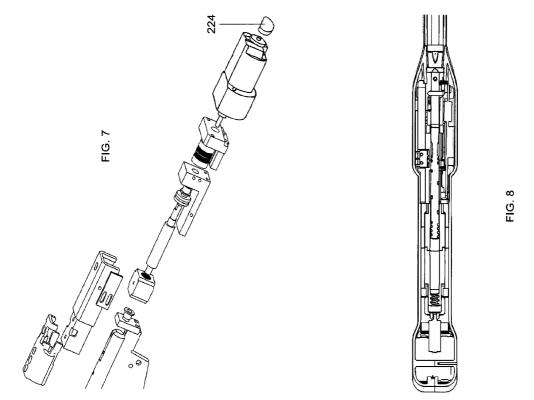
10

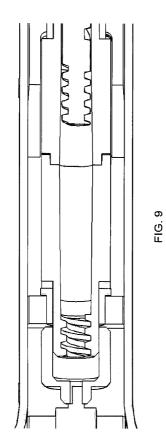

20

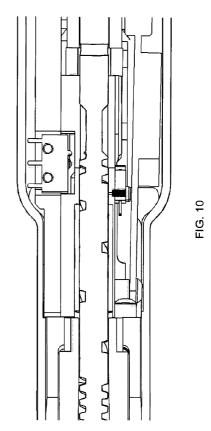

【図1】 【図2】



【図3】




【図5】 【図6】


【図7】 【図8】

【図9】

【図10】

【図11】

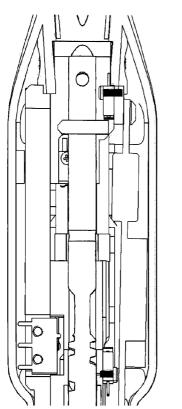
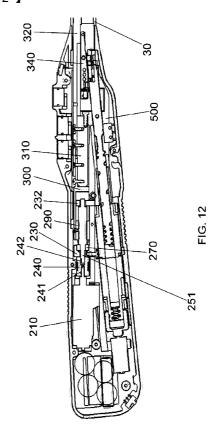
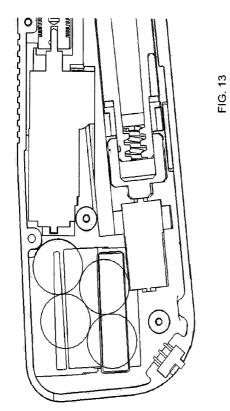
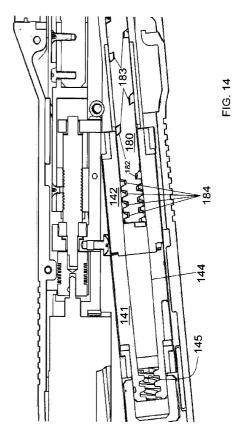
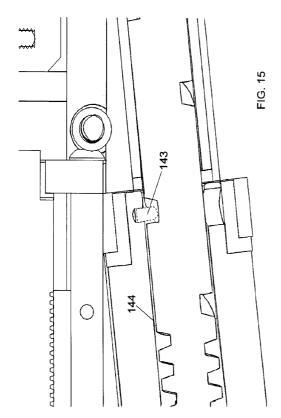




FIG. 11


【図12】


【図13】

【図14】

【図15】

【図16】

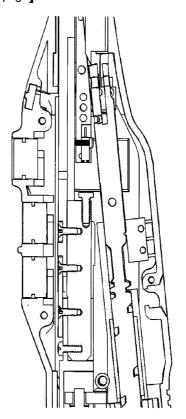
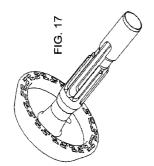
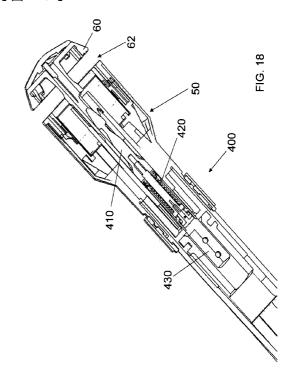
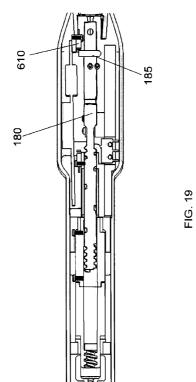
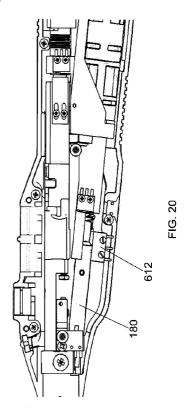
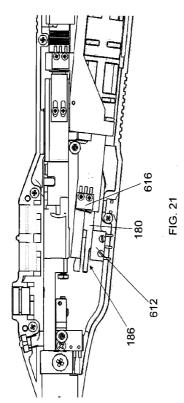
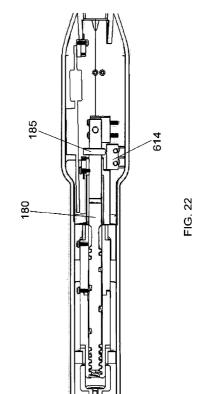




FIG. 16


【図17】


【図18】

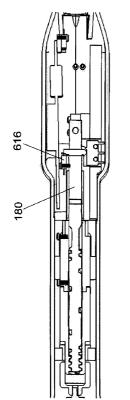
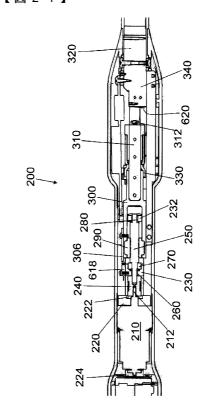

【図19】

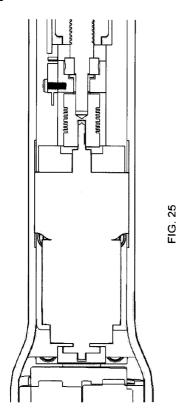

【図20】

【図21】

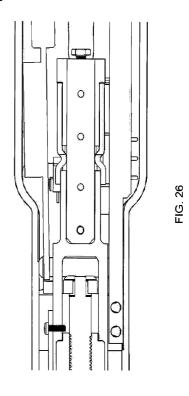
【図22】

【図23】

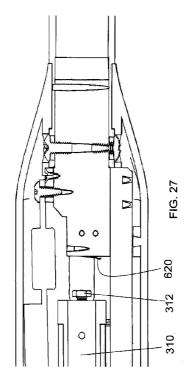



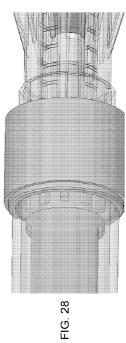

FIG. 23

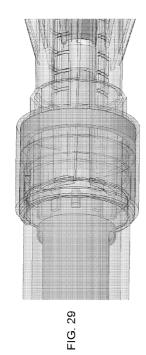
【図24】

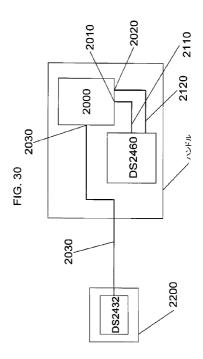


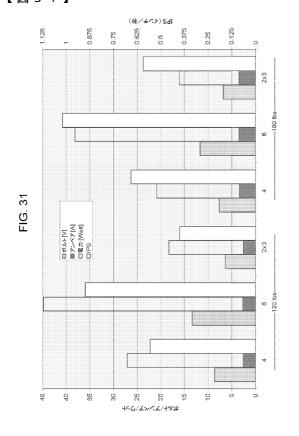
<u>G</u>.2

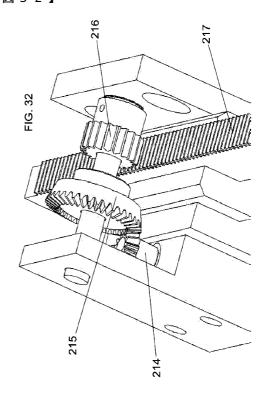

【図25】


【図26】


【図27】


【図28】

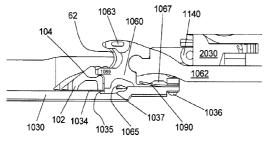
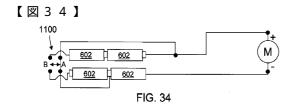
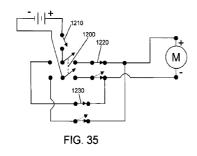

【図29】

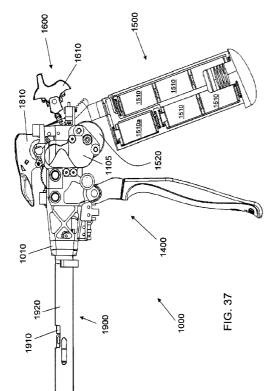

【図30】

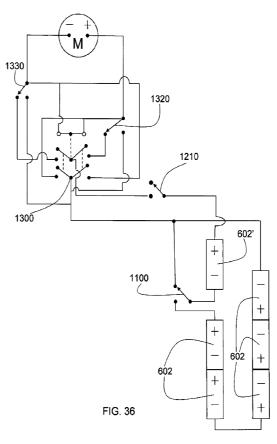
【図31】

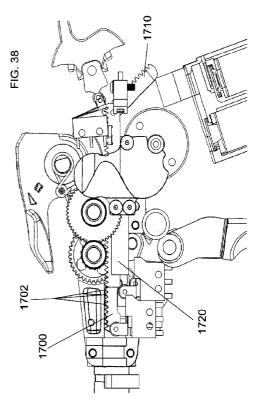
【図32】

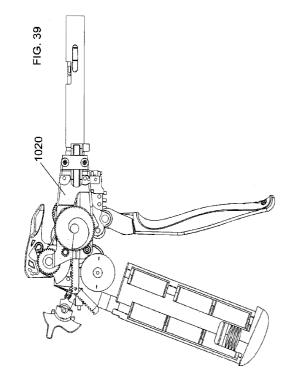
【図33】

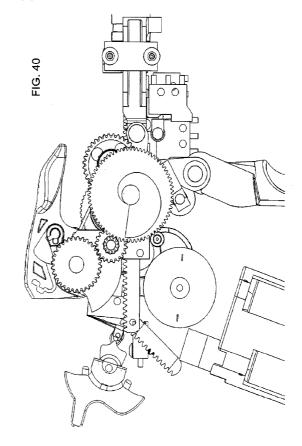




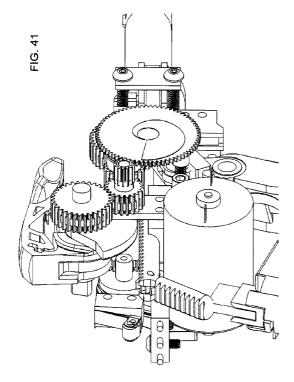

FIG. 33


【図35】


【図37】


【図36】


【図38】

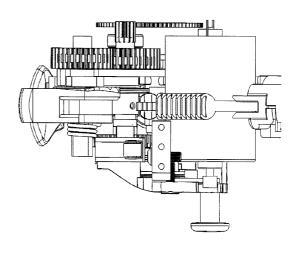
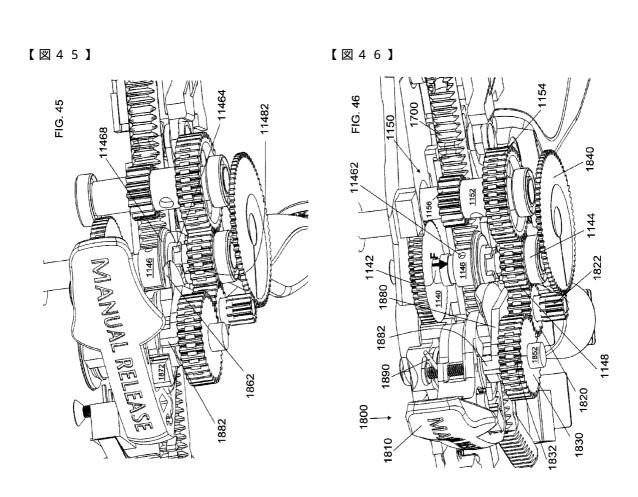

【図39】

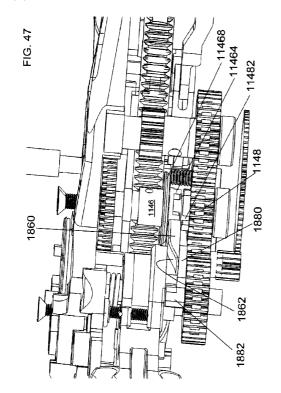
【図40】

【図41】

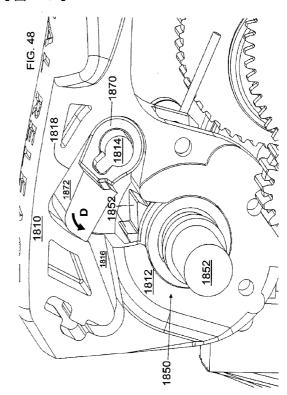
【図42】

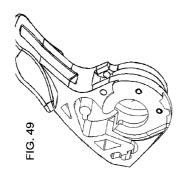
FIG. 42

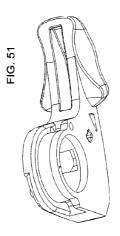



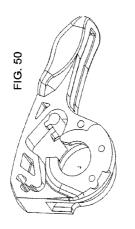

FIG. 4 3]

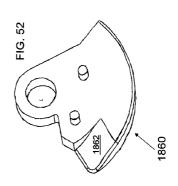
[SI 4 3]

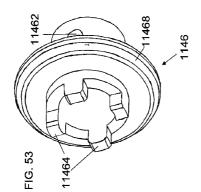

[SI 4 4]

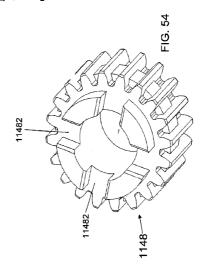

【図47】

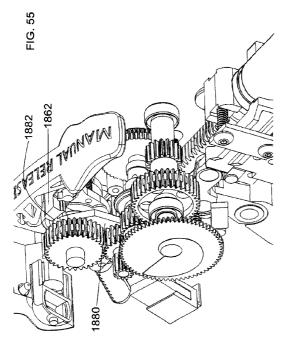

【図48】

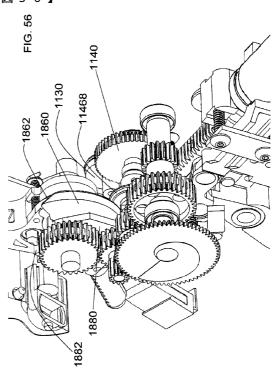

【図49】

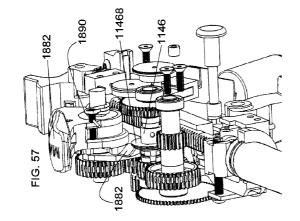

【図51】

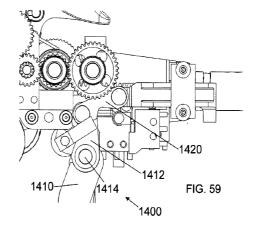

【図50】

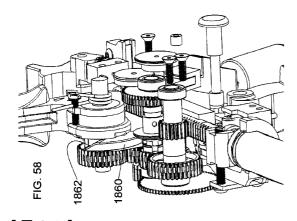

【図52】

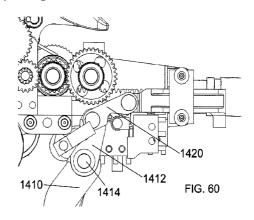

【図53】

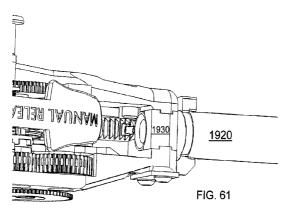

【図54】

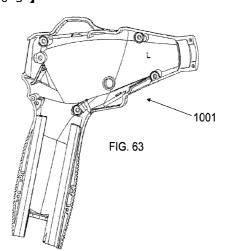

【図55】

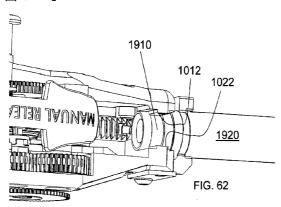

【図56】

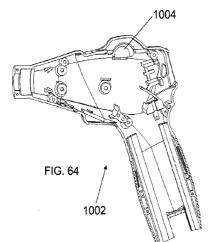

【図57】

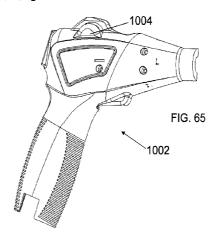

【図59】

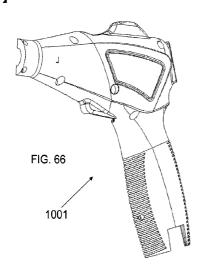

【図58】


【図60】


【図61】


【図63】


【図62】


【図64】

【図65】

【図66】

フロントページの続き

(72)発明者 スミス,ケビン,ダブリュ.アメリカ合衆国 フロリダ州 33156,コーラルゲーブルズ,アルビダパークウェイ 570

(72)発明者 バレス , トーマス アメリカ合衆国 フロリダ州 3 3 1 5 6 , コーラルゲーブルズ , アルビダレーン 9 1 5 1

(72)発明者ドゥビル, デレク, ディーアメリカ合衆国フロリダ州33156, コーラルゲーブルズ, オークレーン5500

(72)発明者リヴェラ,カルロスアメリカ合衆国フロリダ州33156,クーパーシティ,サウスウエスト120 アベニュー- 5817

(72)発明者パーマー,マシュー,エイ.アメリカ合衆国フロリダ州33156,マイアミ,サウスウエスト64 コート1279

審査官 佐藤 智弥

(56)参考文献 特開平7-217762(JP,A) 特開2006-218297(JP,A) 特表2005-502441(JP,A)

(58)調査した分野(Int.CI., DB名) A61B 17/115

专利名称(译)	手动解放付电気自己駆动式手术器具	1			
公开(公告)号	JP5854293B2	公开(公告)日	2016-02-09		
申请号	JP2014008906	申请日	2014-01-21		
[标]申请(专利权)人(译)	伊西康内外科公司				
申请(专利权)人(译)	爱惜康结束 - 杰里先生,油墨.				
当前申请(专利权)人(译)	爱惜康结束 - 杰里先生,油墨.				
[标]发明人	スミスケビンダブリュ バレストーマス ドゥビルデレクディー リヴェラカルロス パーマーマシューエイ				
发明人	スミス,ケビン,ダブリュ. バレス,トーマス ドゥビル,デレク,ディー リヴェラ,カルロス パーマー,マシュー,エイ.				
IPC分类号	A61B17/115				
CPC分类号	A61B17/07207 A61B17/115 A61B17/1155 A61B2017/00017 A61B2017/00398 A61B2017/00734 A61B2017/320052 A61B2017/2927 A61B2017/2931 Y02A90/26				
FI分类号	A61B17/11.310 A61B17/115				
F-TERM分类号	4C160/DD02 4C160/DD23 4C160/MM43 4C160/NN02 4C160/NN03 4C160/NN08 4C160/NN23				
代理人(译)	Goichi高桥				
审查员(译)	佐藤 智弥				
优先权	60/977489 2007-10-04 US 12/245017 2008-10-03 US				
其他公开文献	JP2014158694A				
外部链接	<u>Espacenet</u>				

摘要(译)

一种外科器械包括外科端部执行器,该外科端部执行器具有可操作以在致动时实现外科手术的致动组件,致动组件的部分(60,1060,102)可在第一位置和第二位置之间移动,以及手柄(10)连接到末端执行器以致动致动组件。手柄具有设置在手柄(10)内的电源(1500),设置在手柄(10)内并由电源(1500)电气连接的电动机(1520),连接电动机(1520)的传动装置可动部分(60,1060,102)可操作以使可动部分(60,1060,102)在电动机(1520)操作时在第一和第二位置之间的任何位置移动,以及手动释放机构(1800)选择性地中断变速器,并且在中断期间,使可动部件(60,1060,102)朝向第一位置移位,而与电动机(1520)的操作无关。

(21) 出願番号	特願2014-8906 (P2014-8906)	(73) 特許権者 508024083		
(22) 出願日	平成26年1月21日 (2014.1.21)	エシコン エンドーサージェリー, インク		
(62) 分割の表示	特願2010-528199 (P2010-528199)			
	の分割	アメリカ合衆国 オハイオ州 45242		
原出願日	平成20年10月4日 (2008.10.4)		, シンシナ ラ	ティ, クリークロード 454
(65) 公開番号	特開2014-158694 (P2014-158694A)		5	
(43) 公開日	平成26年9月4日(2014.9.4)	(74) 代理人	100096024	
審查請求日	平成26年2月19日 (2014.2.19)		弁理士 柏原	東 三枝子
(31) 優先権主張番号	60/977, 489	(74) 代理人	100125520	
(32) 優先日	平成19年10月4日 (2007.10.4)		弁理士 高標	第 剛一
(33) 優先権主張国	米国 (US)	(74) 代理人	100155310	
(31) 優先権主張番号	12/245,017		弁理士 柴田	日 雅仁
(32) 優先日	平成20年10月3日 (2008.10.3)			
(33) 優先権主張国	米国 (US)			
				最終頁に続く